Web Programming in Scheme -

the LAML approach

KURT NORMARK

Department of Computer Science
Aalborg University
Denmark
(e-mail: normark@cs .auc.dk)

Abstract

Functional programming fits well with the use of descriptive markup in HTML and XML.
There is also a good fit between S-expressions in Lisp and the means of expression in HTML
and XML. These similarities are exploited in LAML (Lisp Abstracted Markup Language)
which is a software package for Scheme. LAML supports exact mirrors of different versions
of HTML. In the mirrors each HTML element is represented by a named Scheme function.
The mirror functions guarantee that the generated HTML code is valid. LAML has been
used for both server side CGI programming and programmatic authoring of non-trivial
static web materials. The programmatic LAML author can use the power of functional
programming for the production of everyday web documents. Equally important, it is
straightforward to define domain-specific web languages in Scheme syntax which parallel
the advantages of XML.

1 Introduction

In this paper we discuss the use of Scheme (Kelsey et al., 1998) in the domain of
web programming. Web programming covers both the WWW server side, the client
side (browsers), and tools that generate web contents. We will primarily report on
experience with Scheme programming in the domain of tools that generate static
web contents, but we will also touch on CGI programming of web servers.

Almost any non-trivial web development effort involves some kind of program-
ming side by side with use of a markup language (HTML or XML). In many contexts
the source documents are written as a mix of fragments from a markup language
and an imperative programming language. Such mixed source documents typically
represent a clash between languages from two different cultures: The SGML culture
(Bradley, 1997) and the culture of imperative programming. The main reason be-
hind this state of affairs is a desire to separate the authoring of web contents from
programming, not least because only relatively few web developers master both
areas. We see three major problems with this mixed approach:

1. The borderline problem. Mixing markup and program fragments in a
single document creates borderlines between two linguistic universes which
cannot smoothly interact with each other. As a concrete example, server pages

www.manaraa.com

in the style of ASP, PHP, and JSP make it difficult to apply the principle
of abstraction as stated by Tennent (Tennent, 1981). (See Meijer’s and van
Velzen’s discussion (Meijer & van Velzen, 2001)[Section 2.2] for a convincing
argument and an example of this problem).

2. The aesthetic problem. The mixing of two languages in a single document
gives a confusing impression, and it almost certainly eliminates any remaining
rest of elegance in the source document.

3. The imperative programming problem. There is an evident misfit be-
tween imperative program fragments and fragments of HTML or XML that
use descriptive markup (Coombs et al., 1987).

The LAML approach contributes with solutions to all three problems. First, we
eliminate direct use of the markup language in web documents by mirroring the
elements of the markup language in the abstractions of a programming language. It
implies that the markup aspects are made available through the abstractions of the
programming language. With this, we provide for use of only a single language - the
programming language. This eliminates the borderline problem mentioned above.
As a consequence, any programmatic means of expression can be used together
with even the finest details of the markup language. If the mirror is complete and
accurate, this approach ensures that the full expressiveness of the markup language
is kept intact at the programmatic level.

Second, we propose the use of a functional programming language instead of using
an imperative language. The declarative style of functional programming fits well
with the use of descriptive markup, which today dominates earlier use of procedural
markup (which is more akin to commands in the imperative style). In the same vein,
the nesting of markup elements has a natural counterpart in nested expressions,
but it runs counter to the use of imperative commands, which cannot be nested in
a similarly direct fashion.

By using the LAML approach, we maximize the utilization of programmatic
means in web documents. As the best illustration, we write static documents di-
rectly in Scheme. Simple documents use almost exclusively the HTML mirror func-
tions, whereas more complicated web documents draw on the advantages of pro-
grammatic solutions, such as conditional branching, organization of data in lists
with accompanying iterations, and definition of abstractions with the goal of mas-
tering the complexity of the document.

As it appears, we have gone for an inclusion of the markup language in the pro-
gramming language by means of mirroring (to be explained in section 2.1.) If we
compare markup languages with programming languages on the ground of computa-
tional power, the weak language has been mirrored in the strong language. We have
rejected the idea of mixing the two languages due to the problems listed above.
But yet a third relationship would be possible, namely an inclusion of program-
ming capabilities in the markup language. With this, programmatic solutions can
be expressed in the markup language without resorting to solutions, where pieces
of foreign program fragments pollute the web document. We are aware of a few
of attempts in this direction (Glickstein, 1999; Krishnamurthi et al., 2000; Nicol,

www.manaraa.com

2000)—all somehow related to Scheme. From a comparison of these with LAML it
is safe to conclude that it is easier to subsume the markup language as abstractions
in a functional programming language than the other way around.

Although Scheme has strong roots in the functional programming paradigm,
Scheme is not a pure functional programming language. In our work on LAML,
including the LAMIL-based tools and applications, we strive for solutions in the
functional programming style. However, we have had at least two reasons to deviate
from this course:

e Adaptions to the surrounding imperative world. Web applications are
part of a context in which mutable state is a fact of live. Therefore it is not
possible to ignore imperative solutions entirely in LAML-based applications.

e Imperative patching of a functional program. In some situations, a
change of a functional program will be unreasonably complicated on func-
tional ground, but straightforward if you introduce an imperative patch. In
a number of the major LAML application, this is the main reason of the
multiparadigmatic style found in these programs.

In the rest of the paper we will first—in section 2—describe how the markup
language is made available as an “HTML mirror” in Scheme. In section 3 we dis-
cuss how to use the HTML mirror functions together with higher-order Scheme
functions. In section 4 we discuss the role and the potential of abstraction with the
goal of obtaining source documents at a higher level. This includes the definition
of new domain specific Scheme-based languages. Section 5 gives a brief overview of
LAML, regarded as a system of document styles, tools, and environmental support.
The paper is finalized by an overview of similar work and a conclusion.

All the examples of the paper are available on-line (Ngrmark, 2002) in the formats
of LAML source documents, HTML target files, and as ‘verbatim HTML files’
(which allow the interested readers to view the details of the generated HTML
documents).

2 Markup language mirroring

We use Scheme as the document source language for web pages and web sites.
In other words, the source of a web page, or a set of interlinked web pages, is a
Scheme program. Figure 1 shows an example of a web document written in Scheme
by means of the HTML mirror functions. Notice that typical LAML documents
would include other Scheme aspects. One of the main points of bringing HTML
into a functional programming language is to use the potential of abstraction, such
that the document can be handled at a higher level. We will return to this in section
4.

2.1 Basic mirroring

The markup language, such as HTML, is made available in the programming lan-
guage by means of mirroring. Formally, a mirror u maps each element of the markup
language to a function in the programming language.

www.manaraa.com

(load (string-append laml-dir "laml.scm"))
(laml-style "simple-html4.0l-transitional-validating")

(write-html ’(pp)
(html
(head
(title "WEB Programming in Scheme - the LAML approach")
)
(body
(h1 "WEB Programming in Scheme - the LAML approach")

(p "The paper"
(a ’href "http://www.cs.auc.dk/“normark/laml/papers/jfp.pdf"
(em "WEB Programming in Scheme - the LAML approach"))
"is written for people who are interested in functional programming."
"The" (a ’href "abstract.html" "abstract") "is available as a separate page.")

(p "The paper contains the following sections:")

(ol
(1i "Introduction")
(1i "Markup language mirroring")
(1i "Programming with the HTML mirror functions")
(1i "Raising the level of abstraction")
(1i "LAML overview")
(1i "Reflections and similar work")
(1i "Conclusions"))

(p "There exists other papers about LAML, such as:")
(ul
(1i (a ’href "http://www.cs.auc.dk/“normark/laml/papers/www2002/p296-normark.html"
"Programmatic WWW authoring using Scheme and LAML")))

(p "Kurt Normark" (br) "normark@cs.auc.dk" (br)
(a ’href "http://www.cs.auc.dk/“normark" "http://www.cs.auc.dk/“normark")))))

Fig. 1: A sample web document written in Scheme with use of LAML.

pu: Markup Element — Scheme Function

We have chosen to pre-apply g on every element in the markup language, hereby
creating a relative large number of Scheme functions (91 for HTML4.01 transitional,
and 77 for XHTML1.0 strict) each of which we bind to a variable of the same name
as the markup element. (In HTML this causes a single name clash, between the map
element and the essential Scheme procedure map. The clash is handled by prefixing
the mirror of the map element with “html:”.) As an alternative we could generate
the mirror functions on demand, and avoid the name bindings, but we find that
this would blur the lexical and syntactical similarity between a LAML document
and an HTML /XML document.

The following shows a sample application of g on the HTML a anchor element:

u (the HTML a element) = [(generate-html-function "a" ’double)]

4

www.manaraa.com

The higher-order function generate-html-function generates the mirror function
based on the tag name and the fact that it is an element with both start and end
tag.

The parameter profiles of the generated functions, such as the functions a, img,
and p, are chosen as close as possible to the counterparts in the markup language,
with a few convenient generalizations and extensions. Basically and intuitively, the
Scheme form

(tag ’al "vi1" ... ’am "vm" contents)
corresponds to the HTML fragment
<tag al = "v1" ... am = "vm"> contents</tag>

In the Scheme form ’al ... am are symbols and "v1" ... "vm" are strings. The
contents constituent represents zero, one or more contents elements in terms of
strings or activations of mirror functions. The actual correspondence is richer and
slightly more complicated, as reflected by the rules described below.

The generated mirror functions each returns a value, which we below will consider
as a string. In the most recent version of the HTML mirror the mirror functions
return abstract syntax trees (represented as nested lists) which eventually will to
be transformed to strings. The function render performs this transformation.

The HTML mirror functions obey the following rules:

e Rule 1. An attribute name is a symbol in Scheme, which must be followed
by a string that plays the role as the attribute’s value.

e Rule 2. Parameters which do not follow a symbol are content elements
(strings or instances of elements).

e Rule 3. All content elements are implicitly separated by white space.
With these rules, we see that the expression

(p (a ’href "http://www.dcs.glasgow.ac.uk/jfp"

"Journal of" (em "functional programming")))
will be rendered as

<p>

Journal of functional programming

</p>

Here and in the following we will show manually pretty printed HTML fragments.
HTML pretty printing is available as an option in the latest version of the mirror
functions.

The mutual order of attributes and content elements do not matter as long as
rule number 1 is obeyed. Thus, the expression

www.manaraa.com

(p (a "Journal of" ’href "http://www.dcs.glasgow.ac.uk/jfp"

(em "functional programming")))

gives the same result as shown above.

The rationale behind rule number 3 (white space between strings) is to support
the most typical situation without use of additional elements. In the cases where
we want to suppress white space we rely on the rule:

e Rule 4. A boolean false value (which we conveniently bind to a variable
named underscore _) suppresses white space at the location where the boolean
value appears.

Thus, the expression

(p "Use" (kbd "HTML") _ II’II (kbd "XHTML") _ Il’ll
(kbd "XML")_ Il’ll Ilorll (kbd IILAMLII) _ Il.ll)

suppresses white space before the punctuations.
In addition we support the rule:

e Rule 5. Every place an attribute or a content element is accepted we also
accept a list, the elements of which are processed recursively and spliced into
the result.

Thus, the following is a legal LAML expression

(ul (map 1i (list "omne" "two" "three")))
which is rendered as

one</1i> <1i>two</1i> three</1i>
The following expression illustrates the versatility of Rule 5:

(body
(let ((attributes (list ’start "3" ’compact "compact"))
(contents (map 1i (list "one" "two" "three"))))
(ol ’id "demo" contents (1i "final") attributes))

)
The result is rendered as:
<body>
<ol id = "demo" start = "3" compact = "compact">
one</1i> <1i>two</1i> <1li>three</1i> <1li>final</1i>

</body>

As it appears, both fragments of the contents and fragments of the attribute lists
may be represented and passed as lists side by side with singular contents elements

and attributes. More examples and additional discussion of the consequences of
Rule 5 are found in section 3.

Finally, the LAML mirror of HTML treats HTML attributes and CSS attributes
(Cascading Style Sheet attributes (Bos et al., 1998)) uniformly, via use of the fol-
lowing convention:

www.manharaa.com

e Rule 6. An attribute with the name “css:a” refers to the a attribute in CSS.

Inline use of CSS attributes, as opposed to use of external style sheets, is quite
useful when new layers of functions are created on top of the mirror functions. As
an example that depends on Rule 6, the expression

(em ’css:background-color "yellow" "JFP")
is rendered as
<em style = "background-color: yellow;">JFP
Without Rule 6, we should have used the following LAML expression
(em ’style "background-color: yellow;" "JFP")

which includes CSS attribute notation within the HTML style attribute.

2.2 Discussion of the mirror

As illustrated in the previous section (and further discussed in section 3 and 4)
the use of LAML expressions in Scheme contributes with flexible authoring of web
documents. As an additional advantage, the use of the mirror functions guaranties
syntactic correctness (validity). This is due to the following properties of the mirror:

1. Use of standard elements only. There is no risk that the LAML author
uses a non-standard HTML element. The reason is that the equivalent Scheme
functions of such non-standard elements do not exist. The author will be aware
of such a document anomaly when the document is processed.

2. Assurance of well-formed results. The generated HTML document will
always be well-formed. Well-formedness ensures that elements, delimited by
their start and end tags, are nested properly within one another. It is im-
possible to generate an ill-formed document by using the mirror functions of
HTML. At the Scheme source level, the problem of ill-formed documents is
concealed by the use of less redundancy (no end tags).

3. Valid use of attributes. The author will be warned if the HTML attributes
are used inappropriately in a document. A warning is issued when the Scheme
program is executed (at HTML generation time). The attribute check assures
that all the required attributes are present, that the no illegal attribute names
are used, and (to some degree) that the type of the attribute values are as
specified in the DTD. Tt is not yet possible to check the validity of CSS
attributes, because we currently have no detailed knowledge of CSS in LAML.

4. Valid HTML composition. Using the most recent mirrors of HTML in
Scheme, the author will be warned or stopped if an invalid HTML document
is generated. The validation is done on the ground of the element content
models defined by the HTML document type definition (DTD).

The validation of the document against the DTD would be in vain if the textual
content of the document was allowed to contain HTML tags. Instead of prohibiting
the characters <’ and >’ in CDATA we translate them to the HTML character

www.manaraa.com

entities denoted by &1t; and >. The transliteration is carried out by means
of a systematic mapping of every characters in the textual contents of a LAML
document. The map is represented by the HTML character transformation table.
Most, entries in the table will be identity entries, but besides the characters men-
tioned above it is also useful to translate a variety of other characters (such as
the three Danish national characters ‘&’, ‘¢’, and ‘a’) to the corresponding HTML
character entities. It is expected that LAML users customize the HTML character
transformation table in the LAML init file (.1laml).

We see that besides generating the underlying HTML fragments based on a flex-
ible Scheme input syntax, the mirror functions are able to carry out substantial
document, checking ‘on the fly’. Certain anomalies cannot occur at all, and oth-
ers will be identified during the analysis process preceding the HTML synthesis
phase. The actual amount of checking depends on a few boolean variables such
as check-html-attributes? and validate-html?. Errors are reported through a
procedure check-error, the default value of which just gives warnings on standard
terminal output. Alternatively, the user can redefine check-error to be the Scheme
procedure error in order to stop the generation process in case of validation prob-
lems. In section 2.3 we will discuss the creation of the mirror functions, including
the implementation of the validation aspects of the mirror.

As it appears from the discussion in section 2.1 we use the run time types of
Scheme objects to distinguish between attribute names, attribute values, content
strings, list of content strings, and white space suppression. Anomalies are first
discovered at run time. This is the usual and well-known consequence of ‘dynamic
typing’ which makes it harder to find certain kind of errors in an early phase of
the web document development phase. On the positive side, however, the Lisp and
Scheme approach to handling of types creates an ideal ground for flexible passing
of arbitrary parameters to a function. This has been of central importance to the
creation of the HTML mirror functions in LAML, as described in section 2.1, and
as such it has contributed to the development of the Scheme flavor of HTML, as
provided by LAML. In addition, we are able to issue domain specific error messages
because most error messages are controlled by the LAML software, as opposed to
the type checker of the compiler.

The flexible handling of types is the underlying prerequisite which enables us to
write expressions like

(p ’class "main"
"This paper has the following paragraphs:"
(map as-string (list 1 2 3 4)) _ ".")

where as-string converts its parameter to a string. The crucial observation is that
interpretation of the actual parameters depends not only on their run time types,
but also on the context in which they appear. To illustrate the latter point, the
application

(p "The" "main" "part of this paper has the following paragraphs:"

(map as-string (list 1 2 3 4)) _ "." ’class "main"

www.manaraa.com

also passes the string "main" as the second actual parameter to p, but due to
mirror rule number 1 (see section 2.1) the second parameter is part of the paragraph
content, because the preceding parameter is not an attribute name.

The mirror of HTML in Scheme could alternatively be implemented by syntactic
abstractions in terms of Scheme macros (Kelsey et al., 1998). Using this solution,
it would not be necessary to rely on the run time types of data objects to distin-
guish between content elements, attributes, and other elements. On the down side,
a syntactic surface based on macros will not work well together with higher-order
functions (cf. the discussion in section 3). Macros cannot play the role of functions
when passed as input to, or output from higher-order functions. In addition, the
macro concept of Scheme is not uniformly implemented in all major Scheme imple-
mentations, although it has been standardized in the most recent Scheme report
(Kelsey et al., 1998). As such, a mirror based on macros would make it harder to
use LAML from many different Scheme systems.

As it has been illustrated by several examples above, we simulate a simple key-
word parameter mechanism in the HTML mirror functions. The keyword is rep-
resented as a symbol, and the actual parameter of the keyword is the succeeding
string. The keyword parameters are used to pass the HTML attributes names and
values. The identification of the keywords is done at run time, and as such it adds
an overhead to each call of an HTML mirror function which is linear in the length
of the parameter list. The simulated keyword parameter mechanism can be seen
as a simple variant of the Common Lisp’s inherent keyword parameter mechanism
(Steele, 1990).

As a practical aspect of LAML, document fragments are represented as strings
which are passed as parameters to mirror functions and thereby aggregated to the
overall document. As a concrete illustration, look at the Scheme expression

(p "The journal of" (em "functional programming")_".")
which will be rendered as the HTML fragment
<p>The journal of functional programming.</p>
If additional markup is introduced in the expression, such as
(p "The" (b "journal") "of" (em "functional programming")_".")

the string "the journal of" is to be split up in three single word strings of which
the middle is nested in the b mirror function. This causes the following problems:

1. The editing problem. In the practical authoring situation it is error prone
to handle the string quoting and the need of string splitting.

2. The problem of lexical clutter. The amount of “lexical clutter”, primarily
the string quotes, dominates the appearance of the expression. This affects
the readability of the document.

The editing problem can be dealt with effectively by specialized editing com-
mands, such as embed, which embeds a selected string in an application of a
Scheme function. The embed editing command also handles the necessary string

www.manaraa.com

(element "PRE" "-" "-"

"(#PCDATA | TT | I | B | U | S | STRIKE | BIG | SMALL | EM | STRONG | DFN |
CODE | SAMP | KBD | VAR | CITE | ABBR | ACRONYM | A | IMG | APPLET | OBJECT |
FONT | BASEFONT | BR | SCRIPT | MAP | Q | SUB | SUP | SPAN | BDO | IFRAME |
INPUT | SELECT | TEXTAREA | LABEL | BUTTON)*

- (IMG|OBJECT|APPLET|BIG|SMALL|SUB|SUP|FONT |BASEFONT)" " preformatted text ")

(attribute "PRE" (("id" "ID" "#IMPLIED") ("class" "CDATA" "#IMPLIED")
("style" "CDATA" "#IMPLIED") ("title" "CDATA" "#IMPLIED")
("lang" "NAME" "#IMPLIED") ("dir" ("ltr" "rtl") "#IMPLIED")
("onclick" "CDATA" "#IMPLIED") ("ondblclick" "CDATA" "#IMPLIED")
("onmousedown" "CDATA" "#IMPLIED") ("onmouseup" "CDATA" "#IMPLIED")
("onmouseover" "CDATA" "#IMPLIED") ("onmousemove" "CDATA" "#IMPLIED")
("onmouseout" "CDATA" "#IMPLIED") ("onkeypress" "CDATA" "#IMPLIED")
("onkeydown" "CDATA" "#IMPLIED") ("onkeyup" "CDATA" "#IMPLIED")
("width" "NUMBER" "#IMPLIED")))

Fig. 2: An element and attribute descriptor for the HTML p element.

splitting. The editor command embed and other similar commands are available in
Emacs, and they are discussed in more details in section 5. We see no good solution
to the second problem within the context of LAML.

As already discussed, the HTML mirror functions return instances of abstract
syntax trees. Eventually, these trees must be transformed to HTML or XML text
(rendering). Earlier versions of LAML had the reputation of causing heavy garbage
collection due to concatenation of lots of strings in the rendering process. In the
most recent version of LAML we linearize the abstract syntax trees, either directly
to an output stream (which is the best approach if the final target is a file) or into
fixed segments of strings which finally are concatenated. It is worth noticing that
this kind of rendering calls for imperative processing of the abstract syntax trees.

2.3 The creation and organization of the mirror

It would be a major challenge to manually create an accurate mirror of a given
version of HTML or XHTML. In the LAML system, the mirror of HTML is created
automatically from the document type definition (DTD), apart from some aspects
of the full validation analysis which is explained below.

The accuracy of the HTML mirrors in Scheme depends on full syntactical knowl-
edge of the HTML language, as it is represented in the DTD of a particular HTML
version. As part of the preparation for LAML, we have written an ad hoc DTD
parser which produces lists of element and attribute descriptors, represented as
lists. Figure 2 shows and example such descriptors. As one of the main assets of
the descriptors, the much used character entities (textual macros) in the HTML
DTDs are unfolded, such that the full information about the elements are available
in single, convenient representation to be used by the mirror generation tools.

Given the unfolded list representation of the DTD, it is relatively straightforward
to automatically synthesize all the Scheme define forms of the mirrors. We also

10

www.manaraa.com

(define (html4:em contents . attributes)
(let ((attributes-of-elements attribute-descriptor)
(req-n 0))
(if check-html-attributes?
(check-attributes! attributes attributes-of-elements req-n "em"))
(if validate-html?
(validate-contents!
contents
(zero-or-more "#pcdata" "tt" "i" "b" ...)
n eIrlIl))
(if (not contents)
(display-warning ...))
(internal-ast-node "em" contents attributes)))

Fig. 3: An outline of the basic mirror functions of the em element.

generate a substantial amount of useful documentation extracted from the DTD;
This information is processed by the SchemeDoc tool (see section 5) and presented
as manual pages. The validation of the attributes is also easy to deal with on the
ground of the attribute descriptors.

The validation of the HTML document composition is the most difficult part
of the analysis. In general it is known to be difficult to automatically produce
validators from the grammatical model of a DTD. We have chosen an approach
where the easy and most frequently occurring cases are handled automatically. The
remaining cases are left to special purpose checkers, which we write specifically for
a particular mirror.

The validation of the HTML composition is based on the content models of the
element descriptors (corresponding to ‘right hand sides of productions’ in context
free grammars). In the HTML 4.01 transitional DTD, the majority of the content
models (58 out of the 78 non-single elements) are on one of the forms:

RNO. N I B OE 1
RNO. G I B OE

From the element descriptor shown above it can be seen that the content model of
the pre element is more complicated. As part of the DTD parsing, we transform
the simple content model strings to the lists

(zero-or-more "X" ... "Y")
(one-or-more "X" ... "Y")

respectively. Based on these clauses it is easy to automatically synthesize checking
predicates for these simple elements. The validation of the remaining HTML ele-
ments, such as pre, is done manually by writing predicates for each of these. We
had to write 20 such predicates for HTML4.01.

The DTD of HTML4.01 is a context sensitive grammar which uses both general
inclusions and exclusions (Bradley, 1997). Thus, it may be specified that a certain
element is generally allowed or prohibited in a given HTML fragment. The LAML

11

www.manaraa.com

This |is row |1 18 This [row |1 18 row |1

— . - This -
This |is row 2 15 This row 2 is row 2
This |is row 3 18 This row |3 This |is row [3
This |is row 4 15 This row 4 This |is row 4

Fig. 4: Three tables produced in section 3.

validator handles exclusions, but not inclusions. As a consequence, the rarely used
ins and del elements, which a generally allowed in body elements, are not properly
dealt with by the LAML HTML validator. As a practical consequence, there will
be issued ‘false warnings’ when ins or del elements are encountered within a body
element.

The HTML mirror functions are organized in two library files: the surface mirror
and the basic mirror. Most users will only be interested in the surface level (which is
the one described in section 2.1), but for efficiency reasons some applications (such
as CGI programs) can profit from the underlying basic mirror. The surface mirror
identifies attributes and contents elements and passes these to the underlying basic
mirror. Figure 3 shows an outline of basic mirror function.

3 Programming with the HTML mirror functions

In this section we will illustrate applications of the HTML surface mirror together
with higher-order Scheme functions.

The HTML table element is an important element, not only for tabular presen-
tations, but also for more complicated typographical arrangements (despite recom-
mendations to avoid such usage in recent HTML specifications). Basically, a table
is composed of a number of tr table row element instances inside which each cell
is nested in a td element instance.

In a programmatic context, it is attractive to represent a table as an appropriate
data structure instead of authoring a table with plain nesting of tr and td element

instances. Using a Lisp language, it is natural to represent a table as a list of rows,
like

(list

(row "This" "is" "row" "1")
(row "This" "is" "row" "2")
(row "This" "is" "row" "3")

(row |IThiS|I llisll llrowll |I4|I))

where row is an alias of the list function. We will in the following assume that
the variable sample-table is bound to this structure. The table can be rendered
as HTML4.01 by the following expression:

12

www.manaraa.com

(table (tbody
(map (compose tr (map td)) sample-table)) ’border "1")

The result is shown as the leftmost table in Figure 4. The higher-order function
compose combines a number of one-parameter functions to a single, aggregated
function. The function (compose tr (map td)), which is applied on each row in
the table, embeds the elements in the necessary tr and td element instances. The
simplicity of the table rendering in Scheme and LAML depends critically on Rule
5 of mirror, which allows us to pass lists of contents elements to the HTML mirror
functions (see section 2.1). The table expressions returns a HTML fragment which
is rendered as

<table border="1">

<tbody>
<tr><td>This</td> <td>is</td> <td>row</td> <td>1</td> </tr>
<tr><td>This</td> <td>is</td> <td>row</td> <td>2</td> </tr>
<tr><td>This</td> <td>is</td> <td>row</td> <td>3</td> </tr>
<tr><td>This</td> <td>is</td> <td>row</td> <td>4</td> </tr>

</tbody>

</table>

Notice here that the Scheme map function, which requires two or more parameters
(a function an a number of lists) is generalized to accept only a single parameter
(the function). With this, an expression like (map td) is a td mapper. To obtain
this generalization we redefine map as

(define map (curry-generalized map))

where curry-generalized is a higher-order function (part of the general LAML
library) which performs ad hoc currying of a function, which normally requires at
least two parameters:

(define (curry-generalized f)
(lambda rest
(cond ((= (length rest) 1)
(lambda 1st (apply f (cons (car rest) 1lst))))
((>= (length rest) 2) (apply f rest)))))

In order to illustrate the flexibility of handling tables as lists of rows, we will
assume that we decide to switch the first and second column of the table. Instead
of re-arranging the table as such, we write the function switch which does the job:

(define (switch row-1lst)

(cons (second row-1lst)
(cons (first row-list)
(cddr row-list))))

(table (tbody
(map (compose tr (map td) switch) sample-table)) ’border "1")

13

www.manaraa.com

The result is shown in the middle table of Figure 4.

The versatility of the Scheme HTML mirror allows us to exploit the HTML td
attributes of the table cells directly. Here is an example where we colorize the
background of the numeric cells, and where we join two cells in the upper leftmost
corner of the table:

(define (grey-numeric x)
(if (and (string? x) (numeric-string? x))
(1ist x ’bgcolor (rgb-color 200 200 200))

x))
(table
’border "1"
(tbody
(map (compose tr (map (compose td grey-numeric)))
(list
(row (cell "This" ’rowspan "2") "is" "row" "1")
(row "ig" "row" "2")
(row "This" "ig" "row" "3")
(row "This" "ig" "row" "4")))))

The cell function is again just an alias of 1ist. The resulting table is shown as
the rightmost table of Figure 4.

It is often useful to define a variant of an HTML mirror function which binds
certain attributes to fixed values. This can be done by use of the higher-order
function modify-element. Let us, as an example, assume that we wish to bind the
target attribute of the a element to the fixed value "main" and the title attribute
to a fixed explanation:

(define a-main
(modify-element a

’target "main" ’title "Goes to the main window"))
The higher-order function modify-element can be defined as

(define (modify-element element . attributes-and-contents)
(lambda parameters
(apply element (append parameters attributes-and-contents))))

From this we see that we can also bind parts of the content elements if this should
turn out to be useful. With this function

(a-main ’href "http://www.dcs.glasgow.ac.uk/jfp" "JFP")
will be rendered as

<a href = "http://www.dcs.glasgow.ac.uk/jfp"
target = "main" title = "Goes to the main window">JFP

14

www.manharaa.com

In conclusion we find that the combination of HTML mirror functions in LAML
and higher-order functions (general as well as more specialized ones) provide elegant
and powerful solutions to Scheme programmers, who do web development with
LAML.

4 Raising the level of abstraction

In the previous section we have illustrated that it is possible to write HTML docu-
ments by using the HTML mirror functions together with a number of higher-order
functions. As pointed out already in section 2, the real potential of the LAML ap-
proach is to develop layers of abstraction on top of the HTML mirror functions.
We will now discuss this key aspect of LAML.

4.1 Simple ad hoc abstractions

Let us use the example from Figure 1 as a starting point. In section 2 we observed
that it is unlikely that we will write documents with pure HTML markup in Scheme
syntax. We now introduce a number of simple abstractions leading to the document
source shown in Figure 5. The applied abstractions can be summarized as follows:

1. The function html-document implements the standard document preamble
(including application of the html, head, title, and body elements) together
with an application of the h form with the same content as the document title.
Use of this function ensures a proper wrapping of the main contents into a
plain and simple HTML envelope.

2. The function a-href which turns the anchor a element into a function (with
positional parameter correspondence) of exactly two parameters. Use of this
function ensures proper use of an URL href attribute in the a element, which
is not, a required HTML attribute.

3. The function kn, which is the author’s signature function that returns his
name, email address, home page, etc. This function allows the typical docu-
ment trailer to be defined once and for all. The LAML init file, . 1laml, is the
natural location of this function.

Each of these functions adds a bit of convenience for the web author. Seen together
the use of such functions ease the task of the practical web author. Some of the
functions are simple “one shot” functions to be used in a single document only.
Many of the functions, however, are generally useful and can therefore be organized
in libraries which are loaded initially. We have accumulated a substantial collection
of such functions, and organized them in the so-called LAML convenience library.
We realize that many of the convenience functions are primarily valuable for the
author who conceived them, and we therefore recommend the definition of personal
LAML convenience collections.

15

www.manaraa.com

(load (string-append laml-dir "laml.scm"))
(laml-style "simple-html4.01-transitional-validating")

(define (html-document ttl . real-body)
(html (head (title ttl)) (body (hl ttl) real-body)))

(define (laml-paper-url suffix)
(string-append "http://www.cs.auc.dk/ normark/laml/papers/" suffix))

(define (a-href url anchor-text)
(a ’href url anchor-text))

(write-html ’(pp)
(html-document
"WEB Programming in Scheme - the LAML approach"

(p "The paper"
(a-href (laml-paper-url "jfp.pdf")
(em "WEB Programming in Scheme - the LAML approach"))
"authored by Kurt Nrmark is written for people who are
interested in functional programming. The"
(a ’href "abstract.html" "abstract") "is available as a separate page.")

(p "The paper contains the following sections:")

(ol
(1i "Introduction")
(1i "Markup language mirroring")
(1i "Programming with the HTML mirror functions")
(1i "Raising the level of abstraction")
(1i "LAML overview")
(1i "Reflections and similar work")
(1i "Conclusions"))

(p "There exists other papers about LAML, such as:")

(ul

(11 (a-href (laml-paper-url "www2002/p296-normark.html")
"Programmatic WWW authoring using Scheme and LAML")))

(kn)))

Fig. 5: A sample LAML document with convenient abstractions.

4.2 Domain specific Lisp languages

Development of complex web pages and sites call for use of more powerful abstrac-
tion ideas than definition of a few convenience functions that help out at designated
locations in a single HTML document. In these situations it is attractive to design
a new language with means of expressions that fit well with the concepts of the
domain in question. In this section we will discuss and give examples of domain
specific web language designed on the ground of s-expressions and parenthesized
prefix notation ala Lisp and Scheme.

One of the most substantial LAML-based languages, called LENO, has been
developed for the domain of web-based teaching material. LENO is described and

16

www.manharaa.com

(note-page ’laml-basics
(title "LAML basics"
"On this page we describe LAML briefly")

(point

"LAML brings HTML and XML to the Scheme programming language"
"LAML is software package that supports authoring of HTML
and XML documents in Scheme Syntax.")

(concept-1list
(concept "LAML"
"LAML is a Lisp Abstracted Markup Language"
"LAML consists of HTML mirrors, document styles, and tools"))

(items
(item "LAML Characteristics"
"We here mention a number of important LAML characteristics"
(items
(item "Supports a number of different HTML mirrors"
(items
(item "LAML 4.0 loose.
XHTML1.0 strict, transitional, and frameset")))

(item "Supports a number of document styles"
wn

(items
(item "Domain specific WEB languages")
(item "LENO, Scheme manual pages, questionnaire, ..."))))))

(index-words "LAML" "mirror" "LENO"))

Fig. 6: A LENO note page in the original syntax

discussed in separate papers (Ngrmark, 2001b; Ngrmark, 2000c). Figure 6 shows an
example of a LENO source document, fragment. The fragment represents a single
note page with with title, point, concept-1list and index-words subclauses. A
note page gives rise to a number of different underlying HTML pages that represent
the note page at different levels of abstractions.

There are several different ways to implement a domain specific web language in
Scheme:

1. Via functional abstraction in Scheme. Each new language construct is
defined by a function. As an implication, each constituent of an expression is
evaluated uniformly and eagerly.

2. Via syntactical abstraction in Scheme. Each new language construct is
defined by a Scheme macro. With this approach, the surface syntax can be
defined more freely, and without uniform evaluation of all constituents of a
language construct.

3. Via interpretation of a new list-based language. The new language is
implemented by an interpretor written in Scheme. Using this approach, the
language designer has full freedom to design the language as wanted.

17

www.manaraa.com

Using the first and second approach the interpretation is done by the Scheme
processor, and as such it is trivial to mix Scheme fragments with fragments of the
domain specific web language. This provides for a flavor of web authoring which
we call programmatic authoring (Ngrmark, 2001a). Using these approaches, pro-
grammed solutions can be used anywhere in a web document, and it can be used
at any time during the development process.

LENO and other similar LAML-based web languages have all been implemented
via functional abstraction in Scheme. The surface syntax of a concept c is typically
established by a function of the form:

(define (c . p) (make-element ’c p))

where make-element creates a tagged list structure with the given constituents, as
bound to the formal rest parameter p. Functions applied at the outer level, such
as note-page in LENQO, take responsibility of interpreting the nested and tagged
structures.

The original version of LENOQ, as illustrated in Figure 6, uses surface functions
with positional parameter correspondence, and the surface functions accept only a
fixed number of parameters. Recently, we have reengineered LENO to support a
more flexible syntax similar to the surface syntax of the HTML mirror functions
(see section 2.1). This syntactical surface is called XML-in-LAML, and as the name
suggests the syntax is compatible with the generic XML syntax (Consortium, 1998).
Figure 7 shows the example from Figure 6 in XML-in-LAML syntax.

The XML-in-LAML syntax is more flexible with respect to support of additional
attributes than the original surface syntax of LENO. On the downside, the format
is more verbose than the original LENO format, and as such it calls for definition
of extensive editor templates to be competitive with the more purified Scheme
syntax. Also, it is quite elaborate to introduce lists of subclauses in an XML-in-
LAML document. As an example from LENQO, we denote a list of index words
as

(index-words
(index-word "first")

(index-word "second"))

We need to define the element index-word to accommodate individual index words.
If we accept Lisp lists as a separate means of expression, we could just write

(index-words (list "first" "second"))

This, however, would harm the one-to-one correspondence between XML and XMIL-
in-LAML.

If desired, it is straightforward to translate a LENO XML document to the inter-
nal document representation of LENQO, using an XML parser. It is not part of our
plans to utilize this possibility. We find it more attractive to author web documents
in the context of Scheme (programmatic authoring) than in the static poverty of
XML.

18

www.manaraa.com

(note-page ’id "laml-basics"
(title
(main-text "LAML basics ")
(annotation "On this page we describe LAML briefly"))

(point
(main-text "LAML brings HTML and XML to the Scheme programming language")
(annotation "LAML is software package that supports authoring of HTML
and XML documents in Scheme Syntax."))

(concept-1list
(concept
’concept-name "LAML"
(main-text "LAML is a Lisp Abstracted Markup Language")
(annotation "LAML consists of HTML mirrors, document styles, and tools")))

(items
(item
(main-text "LAML Characteristics")
(annotation "We here mention a number of important LAML characteristics")
(items
(item
(main-text "Supports a number of different HTML mirrors")
(items
(item (main-text "LAML 4.0 loose.
XHTML1.0 strict, transitional, and frameset")))

)
(item
(main-text "Supports a number of document styles")
(items
(item (main-text "Domain specific WEB languages"))
(item (main-text "LENO, Scheme manual pages, questionnaire, ...")))))))

(index-words (index-word "LAML") (index-word "mirror") (index-word "LENO")))

Fig. 7: The LENO note page from Figure 6 using the XML-in-LAML syntax.

Using the XML-in-LAML syntax we can think of our documents as XML doc-
uments in slightly different surface syntax than that of an SGML language. Most
differently, we have to accept that all string contents are passed as quoted strings.
But as for LAML documents using the HTML mirror functions (like in Figure 1)
we do not want to stay at this level. We wish to mix programmatic means (not least
higher-order functions) with the XML-in-LAML functions, exactly as illustrated in
section 3, and we also wish to be able to introduce ad hoc abstractions, like in
section 4.1.

It is worth a consideration what should be the value of the note-page expression
in Figure 7 or one of its subexpressions. LENO takes a very pragmatic stand on this
issue, because the note-page expression causes creation of a number of underlying
HTML pages, or contributions to HTML pages. As such note-page is not a func-
tion, but a procedure. Thus, in LENO, the implementation of the XML-in-LAML
abstractions directly realizes a non-trivial transformation from the domain-specific
language to a set of HTML files. Alternatively, we could chose an intermediate lan-

19

www.manaraa.com

guage as target of the XML-in-LAML functions, much like the abstract syntax trees
generated by the validating HTML mirror functions (see section 2.1). Such a repre-
sentation would serve as a canonical representation of the source document, where
evaluation of ad hoc abstractions and outer higher-order functions have already
taken place.

5 LAML Overview

In this section we will in relative brief terms describe the LAML system, with special
emphasis on the aspects that do not pertain to the HTML mirrors.

It has been a goal to support the LAML system on a number of major platforms,
operating systems, and not least Scheme Systems. LAML assumes compliance with
the fourth revised Scheme Report, R4RS, which is supported by almost all im-
plementations of Scheme. LAML comes with its own general library of functions,
instead of relying on one of the non-standard set of libraries, such as SLIB (Jaf-
fer, 2002) or PLT’s libraries (Flatt, 2000). In order to use LAML it is necessary
somehow to implement between 6 and 9 non-standard functions and procedures
(most important current-time, sort-list, file-exists?, directory-exists?,
delete-file, and copy-file). Most Scheme systems already support these func-
tions, perhaps using other function names or parameters. LAML is configured to a
given platform, operating system, and Scheme system by running a Scheme instal-
lation program, which takes a configuration description (in terms of an association
list) as input.

5.1 LAML document styles

A LAML document style represents a domain specific Lisp language, as discussed in
section 4.2. We have already described the LENO document style (see section 4.2).
The manual document style is a little language for interface description of Scheme
libraries. The manual document style is used together with the SchemeDoc tool (see
section 5.2) and as such it plays a central role for the documentation of the LAML
libraries. The questionnaire document style is another little language for formulation
of questionnaires on the web. The questionnaire document style is accompanied by
a set of CGI programs for registration and presentation of the questionnaire answers
at different levels of abstractions. The course home page document style supports a
high level description of a series of lectures in a university course (Ngrmark, 2000c).
The processing of the course home page document produces a course calendar, a
number of course overviews, and lecture specific pages.

5.2 LAML tools

The LAML system supports a number of web related and Scheme related tools. The
Scheme Elucidator is a LAML based tool for Elucidative Programming (Ngrmark,
2000b; Ngrmark, 2000a) such as documentation of internal aspects of a Scheme
program. SchemeDoc is a tool that extracts interface comments from a library of

20

www.manaraa.com

Scheme procedures. As the name indicates, SchemeDoc is similar to the JavaDoc
tool (Friendly, 1995). SchemeDoc works in concert with the manual document style.
The calendar tool generates a web calendar. The calendar tool is based on a LAML
time library. The LAML Bibtex tool is able to parse simple bibtex files (Lamport,
1986) to association lists, and to render these as HTML fragments. LAML also
comes with XML and HTML parsing and pretty printing tools and a Scheme pretty
printing tool. In addition, there are a number of internal LAML tools for DTD
parsing and mirror generation.

5.3 Environmental support

Execution of a LAML program is plain and normal Scheme execution with a tiny
bit of environmental information defined. The environment information amounts to
the current directory and the name of the current source file. In addition, the LAML
Scheme interpretator must know the location of the LAML installation (laml-dir
which is an absolute path to the LAML directory) such that a central file 1laml.scm
file can be loaded.

LAML can be activated from the operating system’s command prompt, from an
interactive Scheme prompt, and from Emacs. For Emacs users, the latter possibility
is the most attractive; Via the “laml” file extension and an Emacs mode, LAML
files can be processed asynchronously and synchronously by different Emacs com-
mands, such as laml-process-current-buffer. This command is bound to a single
keystroke (defaulted to C-o) and it is also available in a menu of LAML related
commands. Within Emacs it is also possible to start an interactive LAML ses-
sion with the command run-laml-interactively. This defines the environmental
information, and it loads the HTML mirror functions and other useful libraries.

5.4 CGI Programming in LAML

We have done a large amount of CGI programming in Scheme using the LAML CGI
libraries together with the HTML mirror libraries. As a historical remark, LAML
was initiated with the purpose of supporting CGI programming in Scheme. Since
then we have realized that LAML is useful for production of static web pages as
well.

The most substantial CGI application is a distance education environment (IDA-
FUS) which has been in daily use at the Computer Science Department of Aalborg
University since the fall of 1999. The LAML CGI libraries provide for decoding of
URL encoded and multipart encoded data, as submitted via the so-called POST
method in the CGI. The decoded data are represented as association lists in Scheme.
(As a side effect, uploaded files are copied to a destination in the server’s file sys-
tem). Similarly, association lists can be linearized and URL encoded via a function
in the CGI libraries.

The CGI support of LAML is fairly simple and straightforward. It has not been
a goal to hide the details of the CGI protocol for the LAML programmer. In that
respect, the LAML CGI support runs counter to Meijer’s CGI framework in Haskell

21

www.manaraa.com

(Meijer, 2000), which elegantly protects the a Haskell programmer from most id-

iosyncrasies of the Common Gateway Interface.

6 Reflections and Similar Work

We will first discuss similar work in the area of Haskell, ML, Erlang, and Curry.
Following that we will discuss similar work related to Scheme. We conclude with
some reflections on static versus dynamic typing.

6.1 Web Programming in Haskell and related languages

Wallace and Runciman (1999) discuss two different representations of XML doc-
uments in Haskell. The first is based on a generic tree representation of XML
documents. The second is based on typed document fragments, where the DTD
gives rise to a number of algebraic type definitions in Haskell. The driving force
behind the second approach is validation of XML documents via static type check-
ing of the Haskell XML programs. The authors contribute with a collection of
higher-order functions (combinators) that are intended to ease the processing of
XML documents from Haskell. The LAML approach is located in between the two
approaches introduced by Wallace and Runciman. The mirror functions in LAML
are primarily oriented towards HTML, and they are derived from the DTD. XML-
in-LAML documents are currently not derived from a DTD. In addition, LAML is
not geared towards general transformation of XML documents, but rather towards
specific transformation of XML-in-LAML documents to HTML.

Meijer and colleagues have in a number of papers dealt with aspects of web pro-
gramming using Haskell. In the first of these a Haskell framework for CGI program-
ming is presented (Meijer, 2000). As already mentioned in section 5.4, the Haskell
CGI framework hides the low level CGI details from the Haskell programmer. The
paper also presents a modelling of HTML (similar to the generic tree representa-
tion of Wallace and Runciman) together with a rudimentary layer of HTML surface
syntax (called ‘HTML combinators’). In comparison, the LAML CGI support is at
a lower and more basic level, but the HTML modelling in LAML is more advanced
and complete than Meijer’s.

In a second paper, Meijer and Shields (2000) define a new language called XM\
which is indented for generation of dynamic XML documents. As described in the
paper, XM is not yet completely defined. XM is based on the point of view that
programmatic XML expressions, in which the textual content is written and passed
as quoted strings, is intractable. Therefore XM deals with verbatim XML docu-
ments in which program fragments are escaped. Program fragments are expressed
in a language similar to Haskell, but as an important extension, verbatim XML
fragments are part of the language. In comparison, LAML is based on program-
matic notation, and textual contents are passed as quoted strings. We have in this
paper described the virtues of this approach, and we have argued against a mixing
of HTML/XML fragments and (escaped) program fragments.

In a third paper, Meijer and van Velzen (2001) describe HSP (Haskell Server

22

www.manaraa.com

Pages). HSP is similar to ASP, PHP, JSP, and others. As such, HSP documents are
HTML/XML documents with escaped Haskell expressions. In contrast to ASP, it is
possible in HSP to mix HTML/XML and Haskell fragments in ways that preserve
the principle of abstraction (HSP documents are compositional). Technically, XML
fragments are added as atomic expressions and patterns to Haskell. As such, HSP
builds on the same ideas as XMA.

Thiemann (2000) describes another modelling of HTML in Haskell. Each HTML
element and each HTML attribute correspond to its own datatype in Haskell. The
modelling is based on type classes in Haskell and an overloaded add function which
aggregates HTML fragments into each other. As such, the syntactical composition
of HTML documents does not, resemble the syntax of HTML. Thiemann’s approach
always gives well-formed HTML documents, but it is not powerful enough to guar-
anty full document validity on a static type checking basis. The derivation of the
numerous datatypes for elements and attributes calls for an automatic derivation
of these from the DTD of HTML. As reported in the paper, this work has not yet
been completed.

Hanus (2001) describes a functional/logical web programming framework for the
language called Curry. This work is based on a straightforward modelling of HTML
as Curry data structures. As the main contribution in this work, HTML form
expressions and the handling of form input are described together. This is a contrast
to the fragmentation of conventional CGI web programs. Hanus also shows how to
make use of aspects from the logical programming paradigm. High level Curry web
programs are transformed automatically to programs that use the CGI.

With respect to SML, we are aware of Neumann’s fxp parser for XML (Neumann,
1999). In addition, Sestoft and colleagues have implemented ML server pages (Ses-
toft, 2002), which is similar to ASP, JSP, PHP, and HSP. In the functional pro-
gramming language Erlang, XMerL provides an Erlang modelling of XML (Wiger,
2000).

6.2 Web Programming in Scheme

It is interesting to notice that Scheme via DSSSL has played a relatively early
role in the processing of SGML document. DSSSL (which means Document Style
Semantics and Specification Language) is an ISO standard for specifying document
transformation and formatting.

BRL is a language designed for server-sidle WWW-based applications (Lewis,
2000). BRL allows the WWW author to activate Scheme at designated places in
an HTML document. The places are identified with square brackets. As such, a
BRL program mixes fragments of HTML with fragments of Scheme. The Scheme
program fragments within the square brackets are executed on the WWW server,
using a slightly non-standard Scheme semantics. BRL is particularly strong with
respect to access of a relational database on the server side.

Latte (Glickstein, 1999) is mixture of the Latex text formatting system and
Scheme, at least at the conceptual level. In Latte, the author uses a Latex-like
markup style. Most interesting, however, Latte mirrors a language similar to Scheme

23

www.manaraa.com

in the markup framework. This means that it is possible to make programmatic
contributions to a Latte document by writing Scheme definitions in a Latex syntax.

As an alternative to XSLT (Adler, 2000) Krishnamurthi et al. (2000) have pro-
posed a similar XML transformation framework called XT3D. The XT3D work is
based on the idea of ‘transformation by example’, which in turn is rooted in the
work on a macro facility for Scheme done by Kohlbecker (1986). Like XSL and
XSLT, the languages involved in XT3D are all XML languages with Scheme used
at an internal level.

Scheme has been used in other web programming contexts as well. Queinnec
(2000; 2001) uses the concept of continuations to support sessions on the web server.
Instead of composing a server program of many state-less CGI programs, Queinnec
recommends the use of a single Scheme program which in a coroutine-like fashion
can be resumed when input is received from the client. Resumption points are
handled by means of continuations. The major challenge in this work is to provide
for persistence of the continuations on the server. Graunke et al. (2001a) work on a
similar problem in the context of the PLT Scheme system. In their work, however,
the goal is automatically to transform an interactive program to a set of CGI
programs. Like in Queinnec’s work the continuation concept plays an important
role, but the programmer is not required to use it explicitly. As an interesting
variation, Graunke et al. rely on persistent continuations kept at the client side.

Besides CGI related work, Scheme is also used for more dedicated WWW servers.
The PLT group has demonstrated that excellent performance can be obtained by
a WWW server written exclusively in Scheme (Graunke et al., 2001b). As the
downside of this approach, the services provided by a more conventional web server
are not available. As a consequence of this observation we work on Scheme-based
LAML module called SLAML (Hansen et al., 2002) for the Apache web server.

6.3 Static versus dynamic typing

Scheme’s use of dynamic typing stands as a contrast to static typing, as used in
most other functional programming languages.

Although we fully acknowledge the ideals of earliest possible identification of
errors we would like to point out that

e even with static type checking there will most likely be other kinds of errors
that cannot be identified before run time (test time). Erroneous use of data
relative to the static types of functions is a relatively trivial problem compared
to these more severe errors.

e functions with static type checking provide for less flexibility than functions in
Scheme. It would be difficult to mimic the conventions of the HTML Scheme
mirror functions in an existing functional programming language, and both
keeping the advantages of static type safety and notational elegance.

Taking an overall look the web-oriented literature that relates the functional pro-
gramming paradigm, we find that the problem of type checking is overemphasized.
Doing web work in a functional context is oriented towards the creation of high

24

www.manaraa.com

quality web material; It is not entirely a game related to finding errors as early as
possible in the development process.

Due to the use of ‘dynamic typing’ the LAML author must be aware that some
type errors are identified at a late point in time, and that there is a risk that type
errors will remain in the software. From the experience of the author (who have used
LAML extensively and exclusively for all his web work the last four years) this has
never been a major problem at least not compared to the other problems which
inevitably are experienced when dealing with development of non-trivial software.

7 Conclusions

With the use of LAML, the Scheme programming community can take advantage
of the ideas of functional programming, both for everyday web production needs
and for more specialized and demanding web production tasks. The latter calls for
definition of domain-specific Scheme-based languages that parallels the definition
of XML languages. Use of LAML brings functional programming power to the fin-
gertips of the web developer at every location of the document, and at every time in
the development process. Using the Emacs LAML support, the practical processing
of a LAML document is conveniently streamlined. Using XML as an alternative,
the computational power needs to be brought in via use of external tools. Such
external tools typically apply new, limited and specially developed programming
frameworks, such as XSL (Adler, 2000), as an alternative to well-proven, general
purpose languages.

As a characteristic property, LAML makes markup aspects available through the
means of the programming language. The use of the functional paradigm is in good
accord with the descriptive nature and ideals of most markup languages. A LAML
user is a programmatic author because the document source is an ordinary Scheme
program. The LAML server side programmer is also writing Scheme programs,
serving in another context than a ‘static LAML document’. Most other systems
make use of a mixed approach. Typically, the outer context is an XML or HTML
document, in which pieces of programs are surrounded by particular tags.

In server side programs, we frequently encounter an outer context of program
constructs in which HTML fragments are located as strings. Imperative server pro-
grams bring this to an extreme in which prefix or suffix parts of well-formed HTML
clauses are printed in print commands. In this paper we have argued against the
mixing of programming notation and markup notation.

In the other extreme there exist programmatic frameworks that are moved into
the XML markup language. XSL (Adler, 2000) is a well-known example of func-
tional nature. The XT3D work (Krishnamurthi et al., 2000) mentioned in section
6.2 and the Lisp inspired SEXPR proposal (Nicol, 2000) are other examples. Such
languages run counter to our aesthetic desires of a good programming notation, in
part because of the verbosity implied. Moreover we are convinced that SGML was
never envisioned as a syntactical framework for programming languages.

LAML is available as free software from the LAML homepage (Ngrmark, 1999b).

25

www.manaraa.com

References

Adler, Sharon. 2000 (November). Extensible stylesheet language (XSL) version 1.0. Tech.
rept. W3C.

Bos, Bert, Lie, Hakon Wium, Lilley, Chris, & Jacobs, Ian. 1998 (May). Cascading style
sheets, level 2 CSS2 specification. Tech. rept. W3C.

Bradley, Neil. (1997). The concise SGML companion. Addison-wesley.

Consortium, World Wide Web. 1998 (February). Eztensible markup language (zml) 1.0.
http://www.w3.org/TR/REC-xml.

Coombs, James H., Renear, Allen H., & DeRose, Steven J. (1987). Markup systems and
the future of scholarly text processing. Communications of the ACM, 30(11), 933-947.

Eugene E. Kohlbecker, Jr. 1986 (August). Syntactic extensions in the programming lan-
guage lisp. Ph.D. thesis, Indiana University. Tecnical Report no. 199.

Flatt, Matthew. 2000 (August). PLT mzscheme: Language manual. http://www.cs.rice.-
edu/CS/PLT /packages/pdf/mzscheme.pdf.

Friendly, Lisa. (1995). The design of distributed hyperlinked programming documenta-
tion. Frass, Sylvain, Garzotto, Franca, Isakowitz, Toms, Nanard, Jocelyne, & Nanard,
Marc (eds), Proceedings of the international workshop on hypermedia design (iwhd’95),
montpellier, france.

Glickstein, Bob. (1999). Latte—the language for transforming text. Located on
http://www.latte.org/.

Graunke, Paul, Findler, Robert Bruce, Krishnamurthi, Shriram, & Felleisen, Matti-
has. (2001a). Automatically restructuring programs for the web. Available from
http://www.ccs.neu.edu/scheme/pubs/.

Graunke, Paul, Krishnamurthi, Shriram, der Hoeven, Steve Van, & Felleisen, Matthias.
(2001b). Programming the web with high-level programming languages. Pages 122136
of: Sands, D. (ed), 10th european symposium on programming, ESOP 2001. Lecture
Notes in Computer Science, no. 2028. Springer Verlag.

Hansen, Mikael, Iversen, Paw, & Juncker, Jimmy. 2002 (January). SLAML - server side
LAML. Preliminary master thesis report. Available from http://www.cs.auc.dk/-
~normark/laml/.

Hanus, Michael. (2001). High-level server side web scripting in Curry. Pages 76 92 of:
Ramakrishnan, I.V. (ed), Practical aspects of declarative languages, Incs 1990. Lecture
Notes in Computer Science. Third International Symposium, PADL 2001, Las Vegas,
Nevada: Springer Verlag.

Jaffer, Aubrey. (2002). SLIB - the portable scheme library version 2d3. http://www-swiss.-
ai.mit.edu/~jaffer/slib.pdf.

Kelsey, Richard, Clinger, William, & (editors), Jonathan Rees. (1998). Revised® report
on the algorithmic language Scheme. Higher-order and symbolic computation, 11(1),
7 105.

Krishnamurthi, Shriram, Cray, Kathryn E., & Graunke, Paul T. (2000). Transformation-
by-example for XML. Pages 249-262 of: Pontelli, E., & Costa, V. Santos (eds), Padl
2000. Springer Verlag.

Lamport, Leslie. (1986). Later user’s guide and reference manual. Addison-Wesley Pub-
lishing Company.

Lewis, Bruce R. 2000 (October). BRL—a database-oriented language to embed in HTML
and other markup. Located on http://brl.sourceforge.net/.

Meijer, Erik. (2000). Server side web scripting in Haskell. Journal of functional program-
ming, 10(1), 1 18.

Meijer, Erik, & Sheilds, Mark. (2000). XmA - a functional language for constructing and

26

www.manaraa.com

manipulating XML documents. Submitted to USENIX Annual Technical Conference
2000. Available via http://www.cse.ogi.edu/~mbs/pub/xmlambda/.

Meijer, Erik, & van Velzen, Danny. (2001). Haskell server pages - functional
programming and the battle for the middle tier. Electronic notes in the-
oretical computer science 41, mo. 1. Elsevier Science B.V. Available via
http://www.elsevier.nl/locate/entcs/volume4l.html.

Neumann, A. (1999). fxp - Processing Structured Documents in SML. Trinder, P., &
Michaelson, G. (eds), st Scottish Functional Programming Workshop, Draft Proceed-
ings. Herriot-Watt University, Edinburgh, Scotland.

Nicol, Thomas. 2000 (November). XEXPR - a scripting language for XML. W3C note
located at http://www.w3.org/TR/.

Ngrmark, Kurt. (1999a). The Elucidative Programming Home Page. http://www.cs.-
auc.dk/~normark/elucidative-programming/.

Ngrmark, Kurt. (1999b). The LAML home page. http://www.cs.auc.dk/~normark/-
laml/.

Ngrmark, Kurt. (2000a). Elucidative programming. Nordic journal of computing, 7(2),
87 105.

Ngrmark, Kurt. 2000b (May). An elucidative programming environment for Scheme.
Pages 109-126 of: Proceedings of NWPER’2000 - nordic workshop on programming
environment research. Available via (Ngrmark, 1999a).

Ngrmark, Kurt. (2000c). A suite of WWW-based tools for advanced course management.
Pages 65-68 of: Proceedings of the 5ht annual sigese/sigcue conference on innovation
and technology in computer science education. ACM Press. Also available from http:-
//www.cs.auc.dk/~normark/laml/.

Ngrmark, Kurt. 2001a (November). Programmatic WWW authoring using Scheme and
LAML. To be presented at the web engineering track of WWW2002. Also available via
(Ngrmark, 1999b).

Ngrmark, Kurt. 2001b (November). Web based lecture notes - the LENO approach. Sub-
mitted for publication. Also available via (Ngrmark, 1999b).

Ngrmark, Kurt. (2002). A collection of LAML examples. WEB material available at
http://www.cs.auc.dk/~normark/scheme/examples/jfp/index.html.

Queinnec, Christian. (2000). The influence of browsers on evaluators or, continuations to
program web servers. Pages 23-33 of: Proceedings of the fifth acm sigplan international
conference on functional programming. ACM Press.

Queinnec, Christian. 2001 (May). Inverting back the inversion of control or, continuations
versus page-centric programming. Tech. rept. Technical Report 7, LIP6. Université Paris
6.

Sestoft, Peter. (2002). ML server pages (version 1.1). http://ellemose.dina.kvl.-
dk/~sestoft/msp/.

Steele, Guy L. (1990). Common lisp, the language, 2nd edition. Digital Press.

Tennent, R.D. (1981). Principles of programming languages. Prentice Hall.

Thiemann, Peter. (2000). Modeling HTML in haskell. Pages 263 277 of: Pontelli, E.,
& Costa, V. Santos (eds), Practical aspects of declarative languages, Incc 1753. Lecture
Notes in Computer Science. Second International Workshop, PADL 2000, Boston, MA,
USA: Springer Verlag.

Wallace, Malcolm, & Runciman, Colin. (1999). Haskell and XML: Generic combinators
or type-based translation? Pages 148-159 of: Proceedings of the ACM SIGPLAN in-
ternational conference on functional programming. Published in Sigplan Notices vol 34
number 9.

27

www.manaraa.com

Wiger, Ulf. 2000 (October). XMerL - interfacing XML and Erlang. Sixth International
Erlang/OTP User Conference. http://www.erlang.se/euc/00/.

28

www.manharaa.com

