
www.manaraa.com

- 1Web Programming in S
heme -the LAML approa
hKURT N�RMARKDepartment of Computer S
ien
eAalborg UniversityDenmark(e-mail: normark�
s.au
.dk)Abstra
tFun
tional programming �ts well with the use of des
riptive markup in HTML and XML.There is also a good �t between S-expressions in Lisp and the means of expression in HTMLand XML. These similarities are exploited in LAML (Lisp Abstra
ted Markup Language)whi
h is a software pa
kage for S
heme. LAML supports exa
t mirrors of di�erent versionsof HTML. In the mirrors ea
h HTML element is represented by a named S
heme fun
tion.The mirror fun
tions guarantee that the generated HTML
ode is valid. LAML has beenused for both server side CGI programming and programmati
 authoring of non-trivialstati
 web materials. The programmati
 LAML author
an use the power of fun
tionalprogramming for the produ
tion of everyday web do
uments. Equally important, it isstraightforward to de�ne domain-spe
i�
 web languages in S
heme syntax whi
h parallelthe advantages of XML. 1 Introdu
tionIn this paper we dis
uss the use of S
heme (Kelsey et al., 1998) in the domain ofweb programming. Web programming
overs both the WWW server side, the
lientside (browsers), and tools that generate web
ontents. We will primarily report onexperien
e with S
heme programming in the domain of tools that generate stati
web
ontents, but we will also tou
h on CGI programming of web servers.Almost any non-trivial web development e�ort involves some kind of program-ming side by side with use of a markup language (HTML or XML). In many
ontextsthe sour
e do
uments are written as a mix of fragments from a markup languageand an imperative programming language. Su
h mixed sour
e do
uments typi
allyrepresent a
lash between languages from two di�erent
ultures: The SGML
ulture(Bradley, 1997) and the
ulture of imperative programming. The main reason be-hind this state of a�airs is a desire to separate the authoring of web
ontents fromprogramming, not least be
ause only relatively few web developers master bothareas. We see three major problems with this mixed approa
h:1. The borderline problem. Mixing markup and program fragments in asingle do
ument
reates borderlines between two linguisti
 universes whi
h
annot smoothly intera
t with ea
h other. As a
on
rete example, server pages

www.manaraa.com

in the style of ASP, PHP, and JSP make it diÆ
ult to apply the prin
ipleof abstra
tion as stated by Tennent (Tennent, 1981). (See Meijer's and vanVelzen's dis
ussion (Meijer & van Velzen, 2001)[Se
tion 2.2℄ for a
onvin
ingargument and an example of this problem).2. The aestheti
 problem. The mixing of two languages in a single do
umentgives a
onfusing impression, and it almost
ertainly eliminates any remainingrest of elegan
e in the sour
e do
ument.3. The imperative programming problem. There is an evident mis�t be-tween imperative program fragments and fragments of HTML or XML thatuse des
riptive markup (Coombs et al., 1987).The LAML approa
h
ontributes with solutions to all three problems. First, weeliminate dire
t use of the markup language in web do
uments by mirroring theelements of the markup language in the abstra
tions of a programming language. Itimplies that the markup aspe
ts are made available through the abstra
tions of theprogramming language. With this, we provide for use of only a single language - theprogramming language. This eliminates the borderline problem mentioned above.As a
onsequen
e, any programmati
 means of expression
an be used togetherwith even the �nest details of the markup language. If the mirror is
omplete anda

urate, this approa
h ensures that the full expressiveness of the markup languageis kept inta
t at the programmati
 level.Se
ond, we propose the use of a fun
tional programming language instead of usingan imperative language. The de
larative style of fun
tional programming �ts wellwith the use of des
riptive markup, whi
h today dominates earlier use of pro
eduralmarkup (whi
h is more akin to
ommands in the imperative style). In the same vein,the nesting of markup elements has a natural
ounterpart in nested expressions,but it runs
ounter to the use of imperative
ommands, whi
h
annot be nested ina similarly dire
t fashion.By using the LAML approa
h, we maximize the utilization of programmati
means in web do
uments. As the best illustration, we write stati
 do
uments di-re
tly in S
heme. Simple do
uments use almost ex
lusively the HTML mirror fun
-tions, whereas more
ompli
ated web do
uments draw on the advantages of pro-grammati
 solutions, su
h as
onditional bran
hing, organization of data in listswith a

ompanying iterations, and de�nition of abstra
tions with the goal of mas-tering the
omplexity of the do
ument.As it appears, we have gone for an in
lusion of the markup language in the pro-gramming language by means of mirroring (to be explained in se
tion 2.1.) If we
ompare markup languages with programming languages on the ground of
omputa-tional power, the weak language has been mirrored in the strong language. We havereje
ted the idea of mixing the two languages due to the problems listed above.But yet a third relationship would be possible, namely an in
lusion of program-ming
apabilities in the markup language. With this, programmati
 solutions
anbe expressed in the markup language without resorting to solutions, where pie
esof foreign program fragments pollute the web do
ument. We are aware of a fewof attempts in this dire
tion (Gli
kstein, 1999; Krishnamurthi et al., 2000; Ni
ol,2

www.manaraa.com

2000)|all somehow related to S
heme. From a
omparison of these with LAML itis safe to
on
lude that it is easier to subsume the markup language as abstra
tionsin a fun
tional programming language than the other way around.Although S
heme has strong roots in the fun
tional programming paradigm,S
heme is not a pure fun
tional programming language. In our work on LAML,in
luding the LAML-based tools and appli
ations, we strive for solutions in thefun
tional programming style. However, we have had at least two reasons to deviatefrom this
ourse:� Adaptions to the surrounding imperative world.Web appli
ations arepart of a
ontext in whi
h mutable state is a fa
t of live. Therefore it is notpossible to ignore imperative solutions entirely in LAML-based appli
ations.� Imperative pat
hing of a fun
tional program. In some situations, a
hange of a fun
tional program will be unreasonably
ompli
ated on fun
-tional ground, but straightforward if you introdu
e an imperative pat
h. Ina number of the major LAML appli
ation, this is the main reason of themultiparadigmati
 style found in these programs.In the rest of the paper we will �rst|in se
tion 2|des
ribe how the markuplanguage is made available as an \HTML mirror" in S
heme. In se
tion 3 we dis-
uss how to use the HTML mirror fun
tions together with higher-order S
hemefun
tions. In se
tion 4 we dis
uss the role and the potential of abstra
tion with thegoal of obtaining sour
e do
uments at a higher level. This in
ludes the de�nitionof new domain spe
i�
 S
heme-based languages. Se
tion 5 gives a brief overview ofLAML, regarded as a system of do
ument styles, tools, and environmental support.The paper is �nalized by an overview of similar work and a
on
lusion.All the examples of the paper are available on-line (N�rmark, 2002) in the formatsof LAML sour
e do
uments, HTML target �les, and as `verbatim HTML �les'(whi
h allow the interested readers to view the details of the generated HTMLdo
uments). 2 Markup language mirroringWe use S
heme as the do
ument sour
e language for web pages and web sites.In other words, the sour
e of a web page, or a set of interlinked web pages, is aS
heme program. Figure 1 shows an example of a web do
ument written in S
hemeby means of the HTML mirror fun
tions. Noti
e that typi
al LAML do
umentswould in
lude other S
heme aspe
ts. One of the main points of bringing HTMLinto a fun
tional programming language is to use the potential of abstra
tion, su
hthat the do
ument
an be handled at a higher level. We will return to this in se
tion4. 2.1 Basi
 mirroringThe markup language, su
h as HTML, is made available in the programming lan-guage by means ofmirroring. Formally, a mirror �maps ea
h element of the markuplanguage to a fun
tion in the programming language.3

www.manaraa.com

(load (string-append laml-dir "laml.s
m"))(laml-style "simple-html4.01-transitional-validating")(write-html '(pp)(html(head(title "WEB Programming in S
heme - the LAML approa
h"))(body(h1 "WEB Programming in S
heme - the LAML approa
h")(p "The paper"(a 'href "http://www.
s.au
.dk/~normark/laml/papers/jfp.pdf"(em "WEB Programming in S
heme - the LAML approa
h"))"is written for people who are interested in fun
tional programming.""The" (a 'href "abstra
t.html" "abstra
t") "is available as a separate page.")(p "The paper
ontains the following se
tions:")(ol(li "Introdu
tion")(li "Markup language mirroring")(li "Programming with the HTML mirror fun
tions")(li "Raising the level of abstra
tion")(li "LAML overview")(li "Refle
tions and similar work")(li "Con
lusions"))(p "There exists other papers about LAML, su
h as:")(ul(li (a 'href "http://www.
s.au
.dk/~normark/laml/papers/www2002/p296-normark.html""Programmati
 WWW authoring using S
heme and LAML")))(p "Kurt Normark" (br) "normark�
s.au
.dk" (br)(a 'href "http://www.
s.au
.dk/~normark" "http://www.
s.au
.dk/~normark")))))Fig. 1: A sample web do
ument written in S
heme with use of LAML.�: Markup Element ! S
heme Fun
tionWe have
hosen to pre-apply � on every element in the markup language, hereby
reating a relative large number of S
heme fun
tions (91 for HTML4.01 transitional,and 77 for XHTML1.0 stri
t) ea
h of whi
h we bind to a variable of the same nameas the markup element. (In HTML this
auses a single name
lash, between the mapelement and the essential S
heme pro
edure map. The
lash is handled by pre�xingthe mirror of the map element with \html:".) As an alternative we
ould generatethe mirror fun
tions on demand, and avoid the name bindings, but we �nd thatthis would blur the lexi
al and synta
ti
al similarity between a LAML do
umentand an HTML/XML do
ument.The following shows a sample appli
ation of � on the HTML a an
hor element:� (the HTML a element) = [(generate-html-fun
tion "a" 'double)℄4

www.manaraa.com

The higher-order fun
tion generate-html-fun
tion generates the mirror fun
tionbased on the tag name and the fa
t that it is an element with both start and endtag.The parameter pro�les of the generated fun
tions, su
h as the fun
tions a, img,and p, are
hosen as
lose as possible to the
ounterparts in the markup language,with a few
onvenient generalizations and extensions. Basi
ally and intuitively, theS
heme form(tag 'a1 "v1" ... 'am "vm"
ontents)
orresponds to the HTML fragment<tag a1 = "v1" ... am = "vm">
ontents</tag>In the S
heme form 'a1 ... 'am are symbols and "v1" ... "vm" are strings. The
ontents
onstituent represents zero, one or more
ontents elements in terms ofstrings or a
tivations of mirror fun
tions. The a
tual
orresponden
e is ri
her andslightly more
ompli
ated, as re
e
ted by the rules des
ribed below.The generated mirror fun
tions ea
h returns a value, whi
h we below will
onsideras a string. In the most re
ent version of the HTML mirror the mirror fun
tionsreturn abstra
t syntax trees (represented as nested lists) whi
h eventually will tobe transformed to strings. The fun
tion render performs this transformation.The HTML mirror fun
tions obey the following rules:� Rule 1. An attribute name is a symbol in S
heme, whi
h must be followedby a string that plays the role as the attribute's value.� Rule 2. Parameters whi
h do not follow a symbol are
ontent elements(strings or instan
es of elements).� Rule 3. All
ontent elements are impli
itly separated by white spa
e.With these rules, we see that the expression(p (a 'href "http://www.d
s.glasgow.a
.uk/jfp""Journal of" (em "fun
tional programming")))will be rendered as<p><a href = "http://www.d
s.glasgow.a
.uk/jfp">Journal of fun
tional programming</p>Here and in the following we will show manually pretty printed HTML fragments.HTML pretty printing is available as an option in the latest version of the mirrorfun
tions.The mutual order of attributes and
ontent elements do not matter as long asrule number 1 is obeyed. Thus, the expression5

www.manaraa.com

(p (a "Journal of" 'href "http://www.d
s.glasgow.a
.uk/jfp"(em "fun
tional programming")))gives the same result as shown above.The rationale behind rule number 3 (white spa
e between strings) is to supportthe most typi
al situation without use of additional elements. In the
ases wherewe want to suppress white spa
e we rely on the rule:� Rule 4. A boolean false value (whi
h we
onveniently bind to a variablenamed unders
ore) suppresses white spa
e at the lo
ation where the booleanvalue appears.Thus, the expression(p "Use" (kbd "HTML") _ "," (kbd "XHTML") _ ","(kbd "XML")_ "," "or" (kbd "LAML") _ ".")suppresses white spa
e before the pun
tuations.In addition we support the rule:� Rule 5. Every pla
e an attribute or a
ontent element is a

epted we alsoa

ept a list, the elements of whi
h are pro
essed re
ursively and spli
ed intothe result.Thus, the following is a legal LAML expression(ul (map li (list "one" "two" "three")))whi
h is rendered asone two threeThe following expression illustrates the versatility of Rule 5:(body(let ((attributes (list 'start "3" '
ompa
t "
ompa
t"))(
ontents (map li (list "one" "two" "three"))))(ol 'id "demo"
ontents (li "final") attributes)))The result is rendered as:<body><ol id = "demo" start = "3"
ompa
t = "
ompa
t">one two three final</body>As it appears, both fragments of the
ontents and fragments of the attribute listsmay be represented and passed as lists side by side with singular
ontents elementsand attributes. More examples and additional dis
ussion of the
onsequen
es ofRule 5 are found in se
tion 3.Finally, the LAML mirror of HTML treats HTML attributes and CSS attributes(Cas
ading Style Sheet attributes (Bos et al., 1998)) uniformly, via use of the fol-lowing
onvention: 6

www.manaraa.com

� Rule 6. An attribute with the name \
ss:a" refers to the a attribute in CSS.Inline use of CSS attributes, as opposed to use of external style sheets, is quiteuseful when new layers of fun
tions are
reated on top of the mirror fun
tions. Asan example that depends on Rule 6, the expression(em '
ss:ba
kground-
olor "yellow" "JFP")is rendered as<em style = "ba
kground-
olor: yellow;">JFPWithout Rule 6, we should have used the following LAML expression(em 'style "ba
kground-
olor: yellow;" "JFP")whi
h in
ludes CSS attribute notation within the HTML style attribute.2.2 Dis
ussion of the mirrorAs illustrated in the previous se
tion (and further dis
ussed in se
tion 3 and 4)the use of LAML expressions in S
heme
ontributes with
exible authoring of webdo
uments. As an additional advantage, the use of the mirror fun
tions guarantiessynta
ti

orre
tness (validity). This is due to the following properties of the mirror:1. Use of standard elements only. There is no risk that the LAML authoruses a non-standard HTML element. The reason is that the equivalent S
hemefun
tions of su
h non-standard elements do not exist. The author will be awareof su
h a do
ument anomaly when the do
ument is pro
essed.2. Assuran
e of well-formed results. The generated HTML do
ument willalways be well-formed. Well-formedness ensures that elements, delimited bytheir start and end tags, are nested properly within one another. It is im-possible to generate an ill-formed do
ument by using the mirror fun
tions ofHTML. At the S
heme sour
e level, the problem of ill-formed do
uments is
on
ealed by the use of less redundan
y (no end tags).3. Valid use of attributes. The author will be warned if the HTML attributesare used inappropriately in a do
ument. A warning is issued when the S
hemeprogram is exe
uted (at HTML generation time). The attribute
he
k assuresthat all the required attributes are present, that the no illegal attribute namesare used, and (to some degree) that the type of the attribute values are asspe
i�ed in the DTD. It is not yet possible to
he
k the validity of CSSattributes, be
ause we
urrently have no detailed knowledge of CSS in LAML.4. Valid HTML
omposition. Using the most re
ent mirrors of HTML inS
heme, the author will be warned or stopped if an invalid HTML do
umentis generated. The validation is done on the ground of the element
ontentmodels de�ned by the HTML do
ument type de�nition (DTD).The validation of the do
ument against the DTD would be in vain if the textual
ontent of the do
ument was allowed to
ontain HTML tags. Instead of prohibitingthe
hara
ters '<' and '>' in CDATA we translate them to the HTML
hara
ter7

www.manaraa.com

entities denoted by < and >. The transliteration is
arried out by meansof a systemati
 mapping of every
hara
ters in the textual
ontents of a LAMLdo
ument. The map is represented by the HTML
hara
ter transformation table.Most entries in the table will be identity entries, but besides the
hara
ters men-tioned above it is also useful to translate a variety of other
hara
ters (su
h asthe three Danish national
hara
ters `�', `�', and �̀a') to the
orresponding HTML
hara
ter entities. It is expe
ted that LAML users
ustomize the HTML
hara
tertransformation table in the LAML init �le (.laml).We see that besides generating the underlying HTML fragments based on a
ex-ible S
heme input syntax, the mirror fun
tions are able to
arry out substantialdo
ument
he
king `on the
y'. Certain anomalies
annot o

ur at all, and oth-ers will be identi�ed during the analysis pro
ess pre
eding the HTML synthesisphase. The a
tual amount of
he
king depends on a few boolean variables su
has
he
k-html-attributes? and validate-html?. Errors are reported through apro
edure
he
k-error, the default value of whi
h just gives warnings on standardterminal output. Alternatively, the user
an rede�ne
he
k-error to be the S
hemepro
edure error in order to stop the generation pro
ess in
ase of validation prob-lems. In se
tion 2.3 we will dis
uss the
reation of the mirror fun
tions, in
ludingthe implementation of the validation aspe
ts of the mirror.As it appears from the dis
ussion in se
tion 2.1 we use the run time types ofS
heme obje
ts to distinguish between attribute names, attribute values,
ontentstrings, list of
ontent strings, and white spa
e suppression. Anomalies are �rstdis
overed at run time. This is the usual and well-known
onsequen
e of `dynami
typing' whi
h makes it harder to �nd
ertain kind of errors in an early phase ofthe web do
ument development phase. On the positive side, however, the Lisp andS
heme approa
h to handling of types
reates an ideal ground for
exible passingof arbitrary parameters to a fun
tion. This has been of
entral importan
e to the
reation of the HTML mirror fun
tions in LAML, as des
ribed in se
tion 2.1, andas su
h it has
ontributed to the development of the S
heme
avor of HTML, asprovided by LAML. In addition, we are able to issue domain spe
i�
 error messagesbe
ause most error messages are
ontrolled by the LAML software, as opposed tothe type
he
ker of the
ompiler.The
exible handling of types is the underlying prerequisite whi
h enables us towrite expressions like(p '
lass "main""This paper has the following paragraphs:"(map as-string (list 1 2 3 4)) _ ".")where as-string
onverts its parameter to a string. The
ru
ial observation is thatinterpretation of the a
tual parameters depends not only on their run time types,but also on the
ontext in whi
h they appear. To illustrate the latter point, theappli
ation(p "The" "main" "part of this paper has the following paragraphs:"(map as-string (list 1 2 3 4)) _ "." '
lass "main")8

www.manaraa.com

also passes the string "main" as the se
ond a
tual parameter to p, but due tomirror rule number 1 (see se
tion 2.1) the se
ond parameter is part of the paragraph
ontent, be
ause the pre
eding parameter is not an attribute name.The mirror of HTML in S
heme
ould alternatively be implemented by synta
ti
abstra
tions in terms of S
heme ma
ros (Kelsey et al., 1998). Using this solution,it would not be ne
essary to rely on the run time types of data obje
ts to distin-guish between
ontent elements, attributes, and other elements. On the down side,a synta
ti
 surfa
e based on ma
ros will not work well together with higher-orderfun
tions (
f. the dis
ussion in se
tion 3). Ma
ros
annot play the role of fun
tionswhen passed as input to, or output from higher-order fun
tions. In addition, thema
ro
on
ept of S
heme is not uniformly implemented in all major S
heme imple-mentations, although it has been standardized in the most re
ent S
heme report(Kelsey et al., 1998). As su
h, a mirror based on ma
ros would make it harder touse LAML from many di�erent S
heme systems.As it has been illustrated by several examples above, we simulate a simple key-word parameter me
hanism in the HTML mirror fun
tions. The keyword is rep-resented as a symbol, and the a
tual parameter of the keyword is the su

eedingstring. The keyword parameters are used to pass the HTML attributes names andvalues. The identi�
ation of the keywords is done at run time, and as su
h it addsan overhead to ea
h
all of an HTML mirror fun
tion whi
h is linear in the lengthof the parameter list. The simulated keyword parameter me
hanism
an be seenas a simple variant of the Common Lisp's inherent keyword parameter me
hanism(Steele, 1990).As a pra
ti
al aspe
t of LAML, do
ument fragments are represented as stringswhi
h are passed as parameters to mirror fun
tions and thereby aggregated to theoverall do
ument. As a
on
rete illustration, look at the S
heme expression(p "The journal of" (em "fun
tional programming")_".")whi
h will be rendered as the HTML fragment<p>The journal of fun
tional programming.</p>If additional markup is introdu
ed in the expression, su
h as(p "The" (b "journal") "of" (em "fun
tional programming")_".")the string "the journal of" is to be split up in three single word strings of whi
hthe middle is nested in the b mirror fun
tion. This
auses the following problems:1. The editing problem. In the pra
ti
al authoring situation it is error proneto handle the string quoting and the need of string splitting.2. The problem of lexi
al
lutter. The amount of \lexi
al
lutter", primarilythe string quotes, dominates the appearan
e of the expression. This a�e
tsthe readability of the do
ument.The editing problem
an be dealt with e�e
tively by spe
ialized editing
om-mands, su
h as embed, whi
h embeds a sele
ted string in an appli
ation of aS
heme fun
tion. The embed editing
ommand also handles the ne
essary string9

www.manaraa.com

(element "PRE" "-" "-""(#PCDATA | TT | I | B | U | S | STRIKE | BIG | SMALL | EM | STRONG | DFN |CODE | SAMP | KBD | VAR | CITE | ABBR | ACRONYM | A | IMG | APPLET | OBJECT |FONT | BASEFONT | BR | SCRIPT | MAP | Q | SUB | SUP | SPAN | BDO | IFRAME |INPUT | SELECT | TEXTAREA | LABEL | BUTTON)*-(IMG|OBJECT|APPLET|BIG|SMALL|SUB|SUP|FONT|BASEFONT)" " preformatted text ")(attribute "PRE" (("id" "ID" "#IMPLIED") ("
lass" "CDATA" "#IMPLIED")("style" "CDATA" "#IMPLIED") ("title" "CDATA" "#IMPLIED")("lang" "NAME" "#IMPLIED") ("dir" ("ltr" "rtl") "#IMPLIED")("on
li
k" "CDATA" "#IMPLIED") ("ondbl
li
k" "CDATA" "#IMPLIED")("onmousedown" "CDATA" "#IMPLIED") ("onmouseup" "CDATA" "#IMPLIED")("onmouseover" "CDATA" "#IMPLIED") ("onmousemove" "CDATA" "#IMPLIED")("onmouseout" "CDATA" "#IMPLIED") ("onkeypress" "CDATA" "#IMPLIED")("onkeydown" "CDATA" "#IMPLIED") ("onkeyup" "CDATA" "#IMPLIED")("width" "NUMBER" "#IMPLIED")))Fig. 2: An element and attribute des
riptor for the HTML p element.splitting. The editor
ommand embed and other similar
ommands are available inEma
s, and they are dis
ussed in more details in se
tion 5. We see no good solutionto the se
ond problem within the
ontext of LAML.As already dis
ussed, the HTML mirror fun
tions return instan
es of abstra
tsyntax trees. Eventually, these trees must be transformed to HTML or XML text(rendering). Earlier versions of LAML had the reputation of
ausing heavy garbage
olle
tion due to
on
atenation of lots of strings in the rendering pro
ess. In themost re
ent version of LAML we linearize the abstra
t syntax trees, either dire
tlyto an output stream (whi
h is the best approa
h if the �nal target is a �le) or into�xed segments of strings whi
h �nally are
on
atenated. It is worth noti
ing thatthis kind of rendering
alls for imperative pro
essing of the abstra
t syntax trees.2.3 The
reation and organization of the mirrorIt would be a major
hallenge to manually
reate an a

urate mirror of a givenversion of HTML or XHTML. In the LAML system, the mirror of HTML is
reatedautomati
ally from the do
ument type de�nition (DTD), apart from some aspe
tsof the full validation analysis whi
h is explained below.The a

ura
y of the HTML mirrors in S
heme depends on full synta
ti
al knowl-edge of the HTML language, as it is represented in the DTD of a parti
ular HTMLversion. As part of the preparation for LAML, we have written an ad ho
 DTDparser whi
h produ
es lists of element and attribute des
riptors, represented aslists. Figure 2 shows and example su
h des
riptors. As one of the main assets ofthe des
riptors, the mu
h used
hara
ter entities (textual ma
ros) in the HTMLDTDs are unfolded, su
h that the full information about the elements are availablein single,
onvenient representation to be used by the mirror generation tools.Given the unfolded list representation of the DTD, it is relatively straightforwardto automati
ally synthesize all the S
heme define forms of the mirrors. We also10

www.manaraa.com

(define (html4:em
ontents . attributes)(let ((attributes-of-elements attribute-des
riptor)(req-n 0))(if
he
k-html-attributes?(
he
k-attributes! attributes attributes-of-elements req-n "em"))(if validate-html?(validate-
ontents!
ontents(zero-or-more "#p
data" "tt" "i" "b" ...)"em"))(if (not
ontents)(display-warning ...))(internal-ast-node "em"
ontents attributes)))Fig. 3: An outline of the basi
 mirror fun
tions of the em element.generate a substantial amount of useful do
umentation extra
ted from the DTD;This information is pro
essed by the S
hemeDo
 tool (see se
tion 5) and presentedas manual pages. The validation of the attributes is also easy to deal with on theground of the attribute des
riptors.The validation of the HTML do
ument
omposition is the most diÆ
ult partof the analysis. In general it is known to be diÆ
ult to automati
ally produ
evalidators from the grammati
al model of a DTD. We have
hosen an approa
hwhere the easy and most frequently o

urring
ases are handled automati
ally. Theremaining
ases are left to spe
ial purpose
he
kers, whi
h we write spe
i�
ally fora parti
ular mirror.The validation of the HTML
omposition is based on the
ontent models of theelement des
riptors (
orresponding to `right hand sides of produ
tions' in
ontextfree grammars). In the HTML 4.01 transitional DTD, the majority of the
ontentmodels (58 out of the 78 non-single elements) are on one of the forms:"(X | ... | Y)*""(X | ... | Y)+"From the element des
riptor shown above it
an be seen that the
ontent model ofthe pre element is more
ompli
ated. As part of the DTD parsing, we transformthe simple
ontent model strings to the lists(zero-or-more "X" ... "Y")(one-or-more "X" ... "Y")respe
tively. Based on these
lauses it is easy to automati
ally synthesize
he
kingpredi
ates for these simple elements. The validation of the remaining HTML ele-ments, su
h as pre, is done manually by writing predi
ates for ea
h of these. Wehad to write 20 su
h predi
ates for HTML4.01.The DTD of HTML4.01 is a
ontext sensitive grammar whi
h uses both generalin
lusions and ex
lusions (Bradley, 1997). Thus, it may be spe
i�ed that a
ertainelement is generally allowed or prohibited in a given HTML fragment. The LAML11

www.manaraa.com

Fig. 4: Three tables produ
ed in se
tion 3.validator handles ex
lusions, but not in
lusions. As a
onsequen
e, the rarely usedins and del elements, whi
h a generally allowed in body elements, are not properlydealt with by the LAML HTML validator. As a pra
ti
al
onsequen
e, there willbe issued `false warnings' when ins or del elements are en
ountered within a bodyelement.The HTML mirror fun
tions are organized in two library �les: the surfa
e mirrorand the basi
 mirror. Most users will only be interested in the surfa
e level (whi
h isthe one des
ribed in se
tion 2.1), but for eÆ
ien
y reasons some appli
ations (su
has CGI programs)
an pro�t from the underlying basi
 mirror. The surfa
e mirroridenti�es attributes and
ontents elements and passes these to the underlying basi
mirror. Figure 3 shows an outline of basi
 mirror fun
tion.3 Programming with the HTML mirror fun
tionsIn this se
tion we will illustrate appli
ations of the HTML surfa
e mirror togetherwith higher-order S
heme fun
tions.The HTML table element is an important element, not only for tabular presen-tations, but also for more
ompli
ated typographi
al arrangements (despite re
om-mendations to avoid su
h usage in re
ent HTML spe
i�
ations). Basi
ally, a tableis
omposed of a number of tr table row element instan
es inside whi
h ea
h
ellis nested in a td element instan
e.In a programmati

ontext, it is attra
tive to represent a table as an appropriatedata stru
ture instead of authoring a table with plain nesting of tr and td elementinstan
es. Using a Lisp language, it is natural to represent a table as a list of rows,like(list(row "This" "is" "row" "1")(row "This" "is" "row" "2")(row "This" "is" "row" "3")(row "This" "is" "row" "4"))where row is an alias of the list fun
tion. We will in the following assume thatthe variable sample-table is bound to this stru
ture. The table
an be renderedas HTML4.01 by the following expression:12

www.manaraa.com

(table (tbody(map (
ompose tr (map td)) sample-table)) 'border "1")The result is shown as the leftmost table in Figure 4. The higher-order fun
tion
ompose
ombines a number of one-parameter fun
tions to a single, aggregatedfun
tion. The fun
tion (
ompose tr (map td)), whi
h is applied on ea
h row inthe table, embeds the elements in the ne
essary tr and td element instan
es. Thesimpli
ity of the table rendering in S
heme and LAML depends
riti
ally on Rule5 of mirror, whi
h allows us to pass lists of
ontents elements to the HTML mirrorfun
tions (see se
tion 2.1). The table expressions returns a HTML fragment whi
his rendered as<table border="1"><tbody><tr><td>This</td> <td>is</td> <td>row</td> <td>1</td> </tr><tr><td>This</td> <td>is</td> <td>row</td> <td>2</td> </tr><tr><td>This</td> <td>is</td> <td>row</td> <td>3</td> </tr><tr><td>This</td> <td>is</td> <td>row</td> <td>4</td> </tr></tbody></table>Noti
e here that the S
heme map fun
tion, whi
h requires two or more parameters(a fun
tion an a number of lists) is generalized to a

ept only a single parameter(the fun
tion). With this, an expression like (map td) is a td mapper. To obtainthis generalization we rede�ne map as(define map (
urry-generalized map))where
urry-generalized is a higher-order fun
tion (part of the general LAMLlibrary) whi
h performs ad ho

urrying of a fun
tion, whi
h normally requires atleast two parameters:(define (
urry-generalized f)(lambda rest(
ond ((= (length rest) 1)(lambda lst (apply f (
ons (
ar rest) lst))))((>= (length rest) 2) (apply f rest)))))In order to illustrate the
exibility of handling tables as lists of rows, we willassume that we de
ide to swit
h the �rst and se
ond
olumn of the table. Insteadof re-arranging the table as su
h, we write the fun
tion swit
h whi
h does the job:(define (swit
h row-lst)(
ons (se
ond row-lst)(
ons (first row-list)(
ddr row-list))))(table (tbody(map (
ompose tr (map td) swit
h) sample-table)) 'border "1")13

www.manaraa.com

The result is shown in the middle table of Figure 4.The versatility of the S
heme HTML mirror allows us to exploit the HTML tdattributes of the table
ells dire
tly. Here is an example where we
olorize theba
kground of the numeri

ells, and where we join two
ells in the upper leftmost
orner of the table:(define (grey-numeri
 x)(if (and (string? x) (numeri
-string? x))(list x 'bg
olor (rgb-
olor 200 200 200))x))(table'border "1"(tbody(map (
ompose tr (map (
ompose td grey-numeri
)))(list(row (
ell "This" 'rowspan "2") "is" "row" "1")(row "is" "row" "2")(row "This" "is" "row" "3")(row "This" "is" "row" "4")))))The
ell fun
tion is again just an alias of list. The resulting table is shown asthe rightmost table of Figure 4.It is often useful to de�ne a variant of an HTML mirror fun
tion whi
h binds
ertain attributes to �xed values. This
an be done by use of the higher-orderfun
tion modify-element. Let us, as an example, assume that we wish to bind thetarget attribute of the a element to the �xed value "main" and the title attributeto a �xed explanation:(define a-main(modify-element a'target "main" 'title "Goes to the main window"))The higher-order fun
tion modify-element
an be de�ned as(define (modify-element element . attributes-and-
ontents)(lambda parameters(apply element (append parameters attributes-and-
ontents))))From this we see that we
an also bind parts of the
ontent elements if this shouldturn out to be useful. With this fun
tion(a-main 'href "http://www.d
s.glasgow.a
.uk/jfp" "JFP")will be rendered as<a href = "http://www.d
s.glasgow.a
.uk/jfp"target = "main" title = "Goes to the main window">JFP14

www.manaraa.com

In
on
lusion we �nd that the
ombination of HTML mirror fun
tions in LAMLand higher-order fun
tions (general as well as more spe
ialized ones) provide elegantand powerful solutions to S
heme programmers, who do web development withLAML. 4 Raising the level of abstra
tionIn the previous se
tion we have illustrated that it is possible to write HTML do
u-ments by using the HTML mirror fun
tions together with a number of higher-orderfun
tions. As pointed out already in se
tion 2, the real potential of the LAML ap-proa
h is to develop layers of abstra
tion on top of the HTML mirror fun
tions.We will now dis
uss this key aspe
t of LAML.4.1 Simple ad ho
 abstra
tionsLet us use the example from Figure 1 as a starting point. In se
tion 2 we observedthat it is unlikely that we will write do
uments with pure HTML markup in S
hemesyntax. We now introdu
e a number of simple abstra
tions leading to the do
umentsour
e shown in Figure 5. The applied abstra
tions
an be summarized as follows:1. The fun
tion html-do
ument implements the standard do
ument preamble(in
luding appli
ation of the html, head, title, and body elements) togetherwith an appli
ation of the h form with the same
ontent as the do
ument title.Use of this fun
tion ensures a proper wrapping of the main
ontents into aplain and simple HTML envelope.2. The fun
tion a-href whi
h turns the an
hor a element into a fun
tion (withpositional parameter
orresponden
e) of exa
tly two parameters. Use of thisfun
tion ensures proper use of an URL href attribute in the a element, whi
his not a required HTML attribute.3. The fun
tion kn, whi
h is the author's signature fun
tion that returns hisname, email address, home page, et
. This fun
tion allows the typi
al do
u-ment trailer to be de�ned on
e and for all. The LAML init �le, .laml, is thenatural lo
ation of this fun
tion.Ea
h of these fun
tions adds a bit of
onvenien
e for the web author. Seen togetherthe use of su
h fun
tions ease the task of the pra
ti
al web author. Some of thefun
tions are simple \one shot" fun
tions to be used in a single do
ument only.Many of the fun
tions, however, are generally useful and
an therefore be organizedin libraries whi
h are loaded initially. We have a

umulated a substantial
olle
tionof su
h fun
tions, and organized them in the so-
alled LAML
onvenien
e library.We realize that many of the
onvenien
e fun
tions are primarily valuable for theauthor who
on
eived them, and we therefore re
ommend the de�nition of personalLAML
onvenien
e
olle
tions. 15

www.manaraa.com

(load (string-append laml-dir "laml.s
m"))(laml-style "simple-html4.01-transitional-validating")(define (html-do
ument ttl . real-body)(html (head (title ttl)) (body (h1 ttl) real-body)))(define (laml-paper-url suffix)(string-append "http://www.
s.au
.dk/~normark/laml/papers/" suffix))(define (a-href url an
hor-text)(a 'href url an
hor-text))(write-html '(pp)(html-do
ument"WEB Programming in S
heme - the LAML approa
h"(p "The paper"(a-href (laml-paper-url "jfp.pdf")(em "WEB Programming in S
heme - the LAML approa
h"))"authored by Kurt Nrmark is written for people who areinterested in fun
tional programming. The"(a 'href "abstra
t.html" "abstra
t") "is available as a separate page.")(p "The paper
ontains the following se
tions:")(ol(li "Introdu
tion")(li "Markup language mirroring")(li "Programming with the HTML mirror fun
tions")(li "Raising the level of abstra
tion")(li "LAML overview")(li "Refle
tions and similar work")(li "Con
lusions"))(p "There exists other papers about LAML, su
h as:")(ul(li (a-href (laml-paper-url "www2002/p296-normark.html")"Programmati
 WWW authoring using S
heme and LAML")))(kn))) Fig. 5: A sample LAML do
ument with
onvenient abstra
tions.4.2 Domain spe
i�
 Lisp languagesDevelopment of
omplex web pages and sites
all for use of more powerful abstra
-tion ideas than de�nition of a few
onvenien
e fun
tions that help out at designatedlo
ations in a single HTML do
ument. In these situations it is attra
tive to designa new language with means of expressions that �t well with the
on
epts of thedomain in question. In this se
tion we will dis
uss and give examples of domainspe
i�
 web language designed on the ground of s-expressions and parenthesizedpre�x notation ala Lisp and S
heme.One of the most substantial LAML-based languages,
alled LENO, has beendeveloped for the domain of web-based tea
hing material. LENO is des
ribed and16

www.manaraa.com

(note-page 'laml-basi
s(title "LAML basi
s""On this page we des
ribe LAML briefly")(point"LAML brings HTML and XML to the S
heme programming language""LAML is software pa
kage that supports authoring of HTMLand XML do
uments in S
heme Syntax.")(
on
ept-list(
on
ept "LAML""LAML is a Lisp Abstra
ted Markup Language""LAML
onsists of HTML mirrors, do
ument styles, and tools"))(items(item "LAML Chara
teristi
s""We here mention a number of important LAML
hara
teristi
s"(items(item "Supports a number of different HTML mirrors"""(items(item "LAML 4.0 loose.XHTML1.0 stri
t, transitional, and frameset")))(item "Supports a number of do
ument styles"""(items(item "Domain spe
ifi
 WEB languages")(item "LENO, S
heme manual pages, questionnaire, ..."))))))(index-words "LAML" "mirror" "LENO"))Fig. 6: A LENO note page in the original syntaxdis
ussed in separate papers (N�rmark, 2001b; N�rmark, 2000
). Figure 6 shows anexample of a LENO sour
e do
ument fragment. The fragment represents a singlenote page with with title, point,
on
ept-list and index-words sub
lauses. Anote page gives rise to a number of di�erent underlying HTML pages that representthe note page at di�erent levels of abstra
tions.There are several di�erent ways to implement a domain spe
i�
 web language inS
heme:1. Via fun
tional abstra
tion in S
heme. Ea
h new language
onstru
t isde�ned by a fun
tion. As an impli
ation, ea
h
onstituent of an expression isevaluated uniformly and eagerly.2. Via synta
ti
al abstra
tion in S
heme. Ea
h new language
onstru
t isde�ned by a S
heme ma
ro. With this approa
h, the surfa
e syntax
an bede�ned more freely, and without uniform evaluation of all
onstituents of alanguage
onstru
t.3. Via interpretation of a new list-based language. The new language isimplemented by an interpretor written in S
heme. Using this approa
h, thelanguage designer has full freedom to design the language as wanted.17

www.manaraa.com

Using the �rst and se
ond approa
h the interpretation is done by the S
hemepro
essor, and as su
h it is trivial to mix S
heme fragments with fragments of thedomain spe
i�
 web language. This provides for a
avor of web authoring whi
hwe
all programmati
 authoring (N�rmark, 2001a). Using these approa
hes, pro-grammed solutions
an be used anywhere in a web do
ument, and it
an be usedat any time during the development pro
ess.LENO and other similar LAML-based web languages have all been implementedvia fun
tional abstra
tion in S
heme. The surfa
e syntax of a
on
ept
 is typi
allyestablished by a fun
tion of the form:(define (
 . p) (make-element '
 p))where make-element
reates a tagged list stru
ture with the given
onstituents, asbound to the formal rest parameter p. Fun
tions applied at the outer level, su
has note-page in LENO, take responsibility of interpreting the nested and taggedstru
tures.The original version of LENO, as illustrated in Figure 6, uses surfa
e fun
tionswith positional parameter
orresponden
e, and the surfa
e fun
tions a

ept only a�xed number of parameters. Re
ently, we have reengineered LENO to support amore
exible syntax similar to the surfa
e syntax of the HTML mirror fun
tions(see se
tion 2.1). This synta
ti
al surfa
e is
alled XML-in-LAML, and as the namesuggests the syntax is
ompatible with the generi
 XML syntax (Consortium, 1998).Figure 7 shows the example from Figure 6 in XML-in-LAML syntax.The XML-in-LAML syntax is more
exible with respe
t to support of additionalattributes than the original surfa
e syntax of LENO. On the downside, the formatis more verbose than the original LENO format, and as su
h it
alls for de�nitionof extensive editor templates to be
ompetitive with the more puri�ed S
hemesyntax. Also, it is quite elaborate to introdu
e lists of sub
lauses in an XML-in-LAML do
ument. As an example from LENO, we denote a list of index wordsas(index-words(index-word "first")(index-word "se
ond"))We need to de�ne the element index-word to a

ommodate individual index words.If we a

ept Lisp lists as a separate means of expression, we
ould just write(index-words (list "first" "se
ond"))This, however, would harm the one-to-one
orresponden
e between XML and XML-in-LAML.If desired, it is straightforward to translate a LENO XML do
ument to the inter-nal do
ument representation of LENO, using an XML parser. It is not part of ourplans to utilize this possibility. We �nd it more attra
tive to author web do
umentsin the
ontext of S
heme (programmati
 authoring) than in the stati
 poverty ofXML. 18

www.manaraa.com

(note-page 'id "laml-basi
s"(title(main-text "LAML basi
s ")(annotation "On this page we des
ribe LAML briefly"))(point(main-text "LAML brings HTML and XML to the S
heme programming language")(annotation "LAML is software pa
kage that supports authoring of HTMLand XML do
uments in S
heme Syntax."))(
on
ept-list(
on
ept'
on
ept-name "LAML"(main-text "LAML is a Lisp Abstra
ted Markup Language")(annotation "LAML
onsists of HTML mirrors, do
ument styles, and tools")))(items(item(main-text "LAML Chara
teristi
s")(annotation "We here mention a number of important LAML
hara
teristi
s")(items(item(main-text "Supports a number of different HTML mirrors")(items(item (main-text "LAML 4.0 loose.XHTML1.0 stri
t, transitional, and frameset"))))(item(main-text "Supports a number of do
ument styles")(items(item (main-text "Domain spe
ifi
 WEB languages"))(item (main-text "LENO, S
heme manual pages, questionnaire, ...")))))))(index-words (index-word "LAML") (index-word "mirror") (index-word "LENO")))Fig. 7: The LENO note page from Figure 6 using the XML-in-LAML syntax.Using the XML-in-LAML syntax we
an think of our do
uments as XML do
-uments in slightly di�erent surfa
e syntax than that of an SGML language. Mostdi�erently, we have to a

ept that all string
ontents are passed as quoted strings.But as for LAML do
uments using the HTML mirror fun
tions (like in Figure 1)we do not want to stay at this level. We wish to mix programmati
 means (not leasthigher-order fun
tions) with the XML-in-LAML fun
tions, exa
tly as illustrated inse
tion 3, and we also wish to be able to introdu
e ad ho
 abstra
tions, like inse
tion 4.1.It is worth a
onsideration what should be the value of the note-page expressionin Figure 7 or one of its subexpressions. LENO takes a very pragmati
 stand on thisissue, be
ause the note-page expression
auses
reation of a number of underlyingHTML pages, or
ontributions to HTML pages. As su
h note-page is not a fun
-tion, but a pro
edure. Thus, in LENO, the implementation of the XML-in-LAMLabstra
tions dire
tly realizes a non-trivial transformation from the domain-spe
i�
language to a set of HTML �les. Alternatively, we
ould
hose an intermediate lan-19

www.manaraa.com

guage as target of the XML-in-LAML fun
tions, mu
h like the abstra
t syntax treesgenerated by the validating HTML mirror fun
tions (see se
tion 2.1). Su
h a repre-sentation would serve as a
anoni
al representation of the sour
e do
ument, whereevaluation of ad ho
 abstra
tions and outer higher-order fun
tions have alreadytaken pla
e. 5 LAML OverviewIn this se
tion we will in relative brief terms des
ribe the LAML system, with spe
ialemphasis on the aspe
ts that do not pertain to the HTML mirrors.It has been a goal to support the LAML system on a number of major platforms,operating systems, and not least S
heme Systems. LAML assumes
omplian
e withthe fourth revised S
heme Report, R4RS, whi
h is supported by almost all im-plementations of S
heme. LAML
omes with its own general library of fun
tions,instead of relying on one of the non-standard set of libraries, su
h as SLIB (Jaf-fer, 2002) or PLT's libraries (Flatt, 2000). In order to use LAML it is ne
essarysomehow to implement between 6 and 9 non-standard fun
tions and pro
edures(most important
urrent-time, sort-list, file-exists?, dire
tory-exists?,delete-file, and
opy-file). Most S
heme systems already support these fun
-tions, perhaps using other fun
tion names or parameters. LAML is
on�gured to agiven platform, operating system, and S
heme system by running a S
heme instal-lation program, whi
h takes a
on�guration des
ription (in terms of an asso
iationlist) as input. 5.1 LAML do
ument stylesA LAML do
ument style represents a domain spe
i�
 Lisp language, as dis
ussed inse
tion 4.2. We have already des
ribed the LENO do
ument style (see se
tion 4.2).The manual do
ument style is a little language for interfa
e des
ription of S
hemelibraries. The manual do
ument style is used together with the S
hemeDo
 tool (seese
tion 5.2) and as su
h it plays a
entral role for the do
umentation of the LAMLlibraries. The questionnaire do
ument style is another little language for formulationof questionnaires on the web. The questionnaire do
ument style is a

ompanied bya set of CGI programs for registration and presentation of the questionnaire answersat di�erent levels of abstra
tions. The
ourse home page do
ument style supports ahigh level des
ription of a series of le
tures in a university
ourse (N�rmark, 2000
).The pro
essing of the
ourse home page do
ument produ
es a
ourse
alendar, anumber of
ourse overviews, and le
ture spe
i�
 pages.5.2 LAML toolsThe LAML system supports a number of web related and S
heme related tools. TheS
heme Elu
idator is a LAML based tool for Elu
idative Programming (N�rmark,2000b; N�rmark, 2000a) su
h as do
umentation of internal aspe
ts of a S
hemeprogram. S
hemeDo
 is a tool that extra
ts interfa
e
omments from a library of20

www.manaraa.com

S
heme pro
edures. As the name indi
ates, S
hemeDo
 is similar to the JavaDo
tool (Friendly, 1995). S
hemeDo
 works in
on
ert with the manual do
ument style.The
alendar tool generates a web
alendar. The
alendar tool is based on a LAMLtime library. The LAML Bibtex tool is able to parse simple bibtex �les (Lamport,1986) to asso
iation lists, and to render these as HTML fragments. LAML also
omes with XML and HTML parsing and pretty printing tools and a S
heme prettyprinting tool. In addition, there are a number of internal LAML tools for DTDparsing and mirror generation.5.3 Environmental supportExe
ution of a LAML program is plain and normal S
heme exe
ution with a tinybit of environmental information de�ned. The environment information amounts tothe
urrent dire
tory and the name of the
urrent sour
e �le. In addition, the LAMLS
heme interpretator must know the lo
ation of the LAML installation (laml-dirwhi
h is an absolute path to the LAML dire
tory) su
h that a
entral �le laml.s
m�le
an be loaded.LAML
an be a
tivated from the operating system's
ommand prompt, from anintera
tive S
heme prompt, and from Ema
s. For Ema
s users, the latter possibilityis the most attra
tive; Via the \laml" �le extension and an Ema
s mode, LAML�les
an be pro
essed asyn
hronously and syn
hronously by di�erent Ema
s
om-mands, su
h as laml-pro
ess-
urrent-bu�er. This
ommand is bound to a singlekeystroke (defaulted to C-o) and it is also available in a menu of LAML related
ommands. Within Ema
s it is also possible to start an intera
tive LAML ses-sion with the
ommand run-laml-intera
tively. This de�nes the environmentalinformation, and it loads the HTML mirror fun
tions and other useful libraries.5.4 CGI Programming in LAMLWe have done a large amount of CGI programming in S
heme using the LAML CGIlibraries together with the HTML mirror libraries. As a histori
al remark, LAMLwas initiated with the purpose of supporting CGI programming in S
heme. Sin
ethen we have realized that LAML is useful for produ
tion of stati
 web pages aswell.The most substantial CGI appli
ation is a distan
e edu
ation environment (IDA-FUS) whi
h has been in daily use at the Computer S
ien
e Department of AalborgUniversity sin
e the fall of 1999. The LAML CGI libraries provide for de
oding ofURL en
oded and multipart en
oded data, as submitted via the so-
alled POSTmethod in the CGI. The de
oded data are represented as asso
iation lists in S
heme.(As a side e�e
t, uploaded �les are
opied to a destination in the server's �le sys-tem). Similarly, asso
iation lists
an be linearized and URL en
oded via a fun
tionin the CGI libraries.The CGI support of LAML is fairly simple and straightforward. It has not beena goal to hide the details of the CGI proto
ol for the LAML programmer. In thatrespe
t, the LAML CGI support runs
ounter to Meijer's CGI framework in Haskell21

www.manaraa.com

(Meijer, 2000), whi
h elegantly prote
ts the a Haskell programmer from most id-iosyn
rasies of the Common Gateway Interfa
e.6 Re
e
tions and Similar WorkWe will �rst dis
uss similar work in the area of Haskell, ML, Erlang, and Curry.Following that we will dis
uss similar work related to S
heme. We
on
lude withsome re
e
tions on stati
 versus dynami
 typing.6.1 Web Programming in Haskell and related languagesWalla
e and Run
iman (1999) dis
uss two di�erent representations of XML do
-uments in Haskell. The �rst is based on a generi
 tree representation of XMLdo
uments. The se
ond is based on typed do
ument fragments, where the DTDgives rise to a number of algebrai
 type de�nitions in Haskell. The driving for
ebehind the se
ond approa
h is validation of XML do
uments via stati
 type
he
k-ing of the Haskell XML programs. The authors
ontribute with a
olle
tion ofhigher-order fun
tions (
ombinators) that are intended to ease the pro
essing ofXML do
uments from Haskell. The LAML approa
h is lo
ated in between the twoapproa
hes introdu
ed by Walla
e and Run
iman. The mirror fun
tions in LAMLare primarily oriented towards HTML, and they are derived from the DTD. XML-in-LAML do
uments are
urrently not derived from a DTD. In addition, LAML isnot geared towards general transformation of XML do
uments, but rather towardsspe
i�
 transformation of XML-in-LAML do
uments to HTML.Meijer and
olleagues have in a number of papers dealt with aspe
ts of web pro-gramming using Haskell. In the �rst of these a Haskell framework for CGI program-ming is presented (Meijer, 2000). As already mentioned in se
tion 5.4, the HaskellCGI framework hides the low level CGI details from the Haskell programmer. Thepaper also presents a modelling of HTML (similar to the generi
 tree representa-tion of Walla
e and Run
iman) together with a rudimentary layer of HTML surfa
esyntax (
alled `HTML
ombinators'). In
omparison, the LAML CGI support is ata lower and more basi
 level, but the HTML modelling in LAML is more advan
edand
omplete than Meijer's.In a se
ond paper, Meijer and Shields (2000) de�ne a new language
alled XM�whi
h is indented for generation of dynami
 XML do
uments. As des
ribed in thepaper, XM� is not yet
ompletely de�ned. XM� is based on the point of view thatprogrammati
 XML expressions, in whi
h the textual
ontent is written and passedas quoted strings, is intra
table. Therefore XM� deals with verbatim XML do
u-ments in whi
h program fragments are es
aped. Program fragments are expressedin a language similar to Haskell, but as an important extension, verbatim XMLfragments are part of the language. In
omparison, LAML is based on program-mati
 notation, and textual
ontents are passed as quoted strings. We have in thispaper des
ribed the virtues of this approa
h, and we have argued against a mixingof HTML/XML fragments and (es
aped) program fragments.In a third paper, Meijer and van Velzen (2001) des
ribe HSP (Haskell Server22

www.manaraa.com

Pages). HSP is similar to ASP, PHP, JSP, and others. As su
h, HSP do
uments areHTML/XML do
uments with es
aped Haskell expressions. In
ontrast to ASP, it ispossible in HSP to mix HTML/XML and Haskell fragments in ways that preservethe prin
iple of abstra
tion (HSP do
uments are
ompositional). Te
hni
ally, XMLfragments are added as atomi
 expressions and patterns to Haskell. As su
h, HSPbuilds on the same ideas as XM�.Thiemann (2000) des
ribes another modelling of HTML in Haskell. Ea
h HTMLelement and ea
h HTML attribute
orrespond to its own datatype in Haskell. Themodelling is based on type
lasses in Haskell and an overloaded add fun
tion whi
haggregates HTML fragments into ea
h other. As su
h, the synta
ti
al
ompositionof HTML do
uments does not resemble the syntax of HTML. Thiemann's approa
halways gives well-formed HTML do
uments, but it is not powerful enough to guar-anty full do
ument validity on a stati
 type
he
king basis. The derivation of thenumerous datatypes for elements and attributes
alls for an automati
 derivationof these from the DTD of HTML. As reported in the paper, this work has not yetbeen
ompleted.Hanus (2001) des
ribes a fun
tional/logi
al web programming framework for thelanguage
alled Curry. This work is based on a straightforward modelling of HTMLas Curry data stru
tures. As the main
ontribution in this work, HTML formexpressions and the handling of form input are des
ribed together. This is a
ontrastto the fragmentation of
onventional CGI web programs. Hanus also shows how tomake use of aspe
ts from the logi
al programming paradigm. High level Curry webprograms are transformed automati
ally to programs that use the CGI.With respe
t to SML, we are aware of Neumann's fxp parser for XML (Neumann,1999). In addition, Sestoft and
olleagues have implemented ML server pages (Ses-toft, 2002), whi
h is similar to ASP, JSP, PHP, and HSP. In the fun
tional pro-gramming language Erlang, XMerL provides an Erlang modelling of XML (Wiger,2000). 6.2 Web Programming in S
hemeIt is interesting to noti
e that S
heme via DSSSL has played a relatively earlyrole in the pro
essing of SGML do
ument. DSSSL (whi
h means Do
ument StyleSemanti
s and Spe
i�
ation Language) is an ISO standard for spe
ifying do
umenttransformation and formatting.BRL is a language designed for server-side WWW-based appli
ations (Lewis,2000). BRL allows the WWW author to a
tivate S
heme at designated pla
es inan HTML do
ument. The pla
es are identi�ed with square bra
kets. As su
h, aBRL program mixes fragments of HTML with fragments of S
heme. The S
hemeprogram fragments within the square bra
kets are exe
uted on the WWW server,using a slightly non-standard S
heme semanti
s. BRL is parti
ularly strong withrespe
t to a

ess of a relational database on the server side.Latte (Gli
kstein, 1999) is mixture of the Latex text formatting system andS
heme, at least at the
on
eptual level. In Latte, the author uses a Latex-likemarkup style. Most interesting, however, Latte mirrors a language similar to S
heme23

www.manaraa.com

in the markup framework. This means that it is possible to make programmati

ontributions to a Latte do
ument by writing S
heme de�nitions in a Latex syntax.As an alternative to XSLT (Adler, 2000) Krishnamurthi et al. (2000) have pro-posed a similar XML transformation framework
alled XT3D. The XT3D work isbased on the idea of `transformation by example', whi
h in turn is rooted in thework on a ma
ro fa
ility for S
heme done by Kohlbe
ker (1986). Like XSL andXSLT, the languages involved in XT3D are all XML languages with S
heme usedat an internal level.S
heme has been used in other web programming
ontexts as well. Queinne
(2000; 2001) uses the
on
ept of
ontinuations to support sessions on the web server.Instead of
omposing a server program of many state-less CGI programs, Queinne
re
ommends the use of a single S
heme program whi
h in a
oroutine-like fashion
an be resumed when input is re
eived from the
lient. Resumption points arehandled by means of
ontinuations. The major
hallenge in this work is to providefor persisten
e of the
ontinuations on the server. Graunke et al. (2001a) work on asimilar problem in the
ontext of the PLT S
heme system. In their work, however,the goal is automati
ally to transform an intera
tive program to a set of CGIprograms. Like in Queinne
's work the
ontinuation
on
ept plays an importantrole, but the programmer is not required to use it expli
itly. As an interestingvariation, Graunke et al. rely on persistent
ontinuations kept at the
lient side.Besides CGI related work, S
heme is also used for more dedi
ated WWW servers.The PLT group has demonstrated that ex
ellent performan
e
an be obtained bya WWW server written ex
lusively in S
heme (Graunke et al., 2001b). As thedownside of this approa
h, the servi
es provided by a more
onventional web serverare not available. As a
onsequen
e of this observation we work on S
heme-basedLAML module
alled SLAML (Hansen et al., 2002) for the Apa
he web server.6.3 Stati
 versus dynami
 typingS
heme's use of dynami
 typing stands as a
ontrast to stati
 typing, as used inmost other fun
tional programming languages.Although we fully a
knowledge the ideals of earliest possible identi�
ation oferrors we would like to point out that� even with stati
 type
he
king there will most likely be other kinds of errorsthat
annot be identi�ed before run time (test time). Erroneous use of datarelative to the stati
 types of fun
tions is a relatively trivial problem
omparedto these more severe errors.� fun
tions with stati
 type
he
king provide for less
exibility than fun
tions inS
heme. It would be diÆ
ult to mimi
 the
onventions of the HTML S
hememirror fun
tions in an existing fun
tional programming language, and bothkeeping the advantages of stati
 type safety and notational elegan
e.Taking an overall look the web-oriented literature that relates the fun
tional pro-gramming paradigm, we �nd that the problem of type
he
king is overemphasized.Doing web work in a fun
tional
ontext is oriented towards the
reation of high24

www.manaraa.com

quality web material; It is not entirely a game related to �nding errors as early aspossible in the development pro
ess.Due to the use of `dynami
 typing' the LAML author must be aware that sometype errors are identi�ed at a late point in time, and that there is a risk that typeerrors will remain in the software. From the experien
e of the author (who have usedLAML extensively and ex
lusively for all his web work the last four years) this hasnever been a major problem|at least not
ompared to the other problems whi
hinevitably are experien
ed when dealing with development of non-trivial software.7 Con
lusionsWith the use of LAML, the S
heme programming
ommunity
an take advantageof the ideas of fun
tional programming, both for everyday web produ
tion needsand for more spe
ialized and demanding web produ
tion tasks. The latter
alls forde�nition of domain-spe
i�
 S
heme-based languages that parallels the de�nitionof XML languages. Use of LAML brings fun
tional programming power to the �n-gertips of the web developer at every lo
ation of the do
ument, and at every time inthe development pro
ess. Using the Ema
s LAML support, the pra
ti
al pro
essingof a LAML do
ument is
onveniently streamlined. Using XML as an alternative,the
omputational power needs to be brought in via use of external tools. Su
hexternal tools typi
ally apply new, limited and spe
ially developed programmingframeworks, su
h as XSL (Adler, 2000), as an alternative to well-proven, generalpurpose languages.As a
hara
teristi
 property, LAML makes markup aspe
ts available through themeans of the programming language. The use of the fun
tional paradigm is in gooda

ord with the des
riptive nature and ideals of most markup languages. A LAMLuser is a programmati
 author be
ause the do
ument sour
e is an ordinary S
hemeprogram. The LAML server side programmer is also writing S
heme programs,serving in another
ontext than a `stati
 LAML do
ument'. Most other systemsmake use of a mixed approa
h. Typi
ally, the outer
ontext is an XML or HTMLdo
ument, in whi
h pie
es of programs are surrounded by parti
ular tags.In server side programs, we frequently en
ounter an outer
ontext of program
onstru
ts in whi
h HTML fragments are lo
ated as strings. Imperative server pro-grams bring this to an extreme in whi
h pre�x or suÆx parts of well-formed HTML
lauses are printed in print
ommands. In this paper we have argued against themixing of programming notation and markup notation.In the other extreme there exist programmati
 frameworks that are moved intothe XML markup language. XSL (Adler, 2000) is a well-known example of fun
-tional nature. The XT3D work (Krishnamurthi et al., 2000) mentioned in se
tion6.2 and the Lisp inspired SEXPR proposal (Ni
ol, 2000) are other examples. Su
hlanguages run
ounter to our aestheti
 desires of a good programming notation, inpart be
ause of the verbosity implied. Moreover we are
onvin
ed that SGML wasnever envisioned as a synta
ti
al framework for programming languages.LAML is available as free software from the LAML homepage (N�rmark, 1999b).25

www.manaraa.com

Referen
esAdler, Sharon. 2000 (November). Extensible stylesheet language (XSL) version 1.0. Te
h.rept. W3C.Bos, Bert, Lie, H�akon Wium, Lilley, Chris, & Ja
obs, Ian. 1998 (May). Cas
ading stylesheets, level 2 CSS2 spe
i�
ation. Te
h. rept. W3C.Bradley, Neil. (1997). The
on
ise SGML
ompanion. Addison-wesley.Consortium, World Wide Web. 1998 (February). Extensible markup language (xml) 1.0.http://www.w3.org/TR/REC-xml.Coombs, James H., Renear, Allen H., & DeRose, Steven J. (1987). Markup systems andthe future of s
holarly text pro
essing. Communi
ations of the ACM, 30(11), 933{947.Eugene E. Kohlbe
ker, Jr. 1986 (August). Synta
ti
 extensions in the programming lan-guage lisp. Ph.D. thesis, Indiana University. Te
ni
al Report no. 199.Flatt, Matthew. 2000 (August). PLT mzs
heme: Language manual. http://www.
s.ri
e.-edu/CS/PLT/pa
kages/pdf/mzs
heme.pdf.Friendly, Lisa. (1995). The design of distributed hyperlinked programming do
umenta-tion. Frass, Sylvain, Garzotto, Fran
a, Isakowitz, Toms, Nanard, Jo
elyne, & Nanard,Mar
 (eds), Pro
eedings of the international workshop on hypermedia design (iwhd'95),montpellier, fran
e.Gli
kstein, Bob. (1999). Latte|the language for transforming text. Lo
ated onhttp://www.latte.org/.Graunke, Paul, Findler, Robert Bru
e, Krishnamurthi, Shriram, & Felleisen, Matti-has. (2001a). Automati
ally restru
turing programs for the web. Available fromhttp://www.

s.neu.edu/s
heme/pubs/.Graunke, Paul, Krishnamurthi, Shriram, der Hoeven, Steve Van, & Felleisen, Matthias.(2001b). Programming the web with high-level programming languages. Pages 122{136of: Sands, D. (ed), 10th european symposium on programming, ESOP 2001. Le
tureNotes in Computer S
ien
e, no. 2028. Springer Verlag.Hansen, Mikael, Iversen, Paw, & Jun
ker, Jimmy. 2002 (January). SLAML - server sideLAML. Preliminary master thesis report. Available from http://www.
s.au
.dk/-�normark/laml/.Hanus, Mi
hael. (2001). High-level server side web s
ripting in Curry. Pages 76{92 of:Ramakrishnan, I.V. (ed), Pra
ti
al aspe
ts of de
larative languages, ln
s 1990. Le
tureNotes in Computer S
ien
e. Third International Symposium, PADL 2001, Las Vegas,Nevada: Springer Verlag.Ja�er, Aubrey. (2002). SLIB - the portable s
heme library version 2d3. http://www-swiss.-ai.mit.edu/�ja�er/slib.pdf.Kelsey, Ri
hard, Clinger, William, & (editors), Jonathan Rees. (1998). Revised5 reporton the algorithmi
 language S
heme. Higher-order and symboli

omputation, 11(1),7{105.Krishnamurthi, Shriram, Cray, Kathryn E., & Graunke, Paul T. (2000). Transformation-by-example for XML. Pages 249{262 of: Pontelli, E., & Costa, V. Santos (eds), Padl2000. Springer Verlag.Lamport, Leslie. (1986). Latex user's guide and referen
e manual. Addison-Wesley Pub-lishing Company.Lewis, Bru
e R. 2000 (O
tober). BRL|a database-oriented language to embed in HTMLand other markup. Lo
ated on http://brl.sour
eforge.net/.Meijer, Erik. (2000). Server side web s
ripting in Haskell. Journal of fun
tional program-ming, 10(1), 1{18.Meijer, Erik, & Sheilds, Mark. (2000). Xm� - a fun
tional language for
onstru
ting and26

www.manaraa.com

manipulating XML do
uments. Submitted to USENIX Annual Te
hni
al Conferen
e2000. Available via http://www.
se.ogi.edu/�mbs/pub/xmlambda/.Meijer, Erik, & van Velzen, Danny. (2001). Haskell server pages - fun
tionalprogramming and the battle for the middle tier. Ele
troni
 notes in the-oreti
al
omputer s
ien
e 41, no. 1. Elsevier S
ien
e B.V. Available viahttp://www.elsevier.nl/lo
ate/ent
s/volume41.html.Neumann, A. (1999). fxp - Pro
essing Stru
tured Do
uments in SML. Trinder, P., &Mi
haelson, G. (eds), 1st S
ottish Fun
tional Programming Workshop, Draft Pro
eed-ings. Herriot-Watt University, Edinburgh, S
otland.Ni
ol, Thomas. 2000 (November). XEXPR - a s
ripting language for XML. W3C notelo
ated at http://www.w3.org/TR/.N�rmark, Kurt. (1999a). The Elu
idative Programming Home Page. http://www.
s.-au
.dk/�normark/elu
idative-programming/.N�rmark, Kurt. (1999b). The LAML home page. http://www.
s.au
.dk/�normark/-laml/.N�rmark, Kurt. (2000a). Elu
idative programming. Nordi
 journal of
omputing, 7(2),87{105.N�rmark, Kurt. 2000b (May). An elu
idative programming environment for S
heme.Pages 109{126 of: Pro
eedings of NWPER'2000 - nordi
 workshop on programmingenvironment resear
h. Available via (N�rmark, 1999a).N�rmark, Kurt. (2000
). A suite of WWW-based tools for advan
ed
ourse management.Pages 65{68 of: Pro
eedings of the 5ht annual sig
se/sig
ue
onferen
e on innovationand te
hnology in
omputer s
ien
e edu
ation. ACM Press. Also available from http:-//www.
s.au
.dk/�normark/laml/.N�rmark, Kurt. 2001a (November). Programmati
 WWW authoring using S
heme andLAML. To be presented at the web engineering tra
k of WWW2002. Also available via(N�rmark, 1999b).N�rmark, Kurt. 2001b (November). Web based le
ture notes - the LENO approa
h. Sub-mitted for publi
ation. Also available via (N�rmark, 1999b).N�rmark, Kurt. (2002). A
olle
tion of LAML examples. WEB material available athttp://www.
s.au
.dk/�normark/s
heme/examples/jfp/index.html.Queinne
, Christian. (2000). The in
uen
e of browsers on evaluators or,
ontinuations toprogram web servers. Pages 23{33 of: Pro
eedings of the �fth a
m sigplan international
onferen
e on fun
tional programming. ACM Press.Queinne
, Christian. 2001 (May). Inverting ba
k the inversion of
ontrol or,
ontinuationsversus page-
entri
 programming. Te
h. rept. Te
hni
al Report 7, LIP6. Universit�e Paris6.Sestoft, Peter. (2002). ML server pages (version 1.1). http://ellemose.dina.kvl.-dk/�sestoft/msp/.Steele, Guy L. (1990). Common lisp, the language, 2nd edition. Digital Press.Tennent, R.D. (1981). Prin
iples of programming languages. Prenti
e Hall.Thiemann, Peter. (2000). Modeling HTML in haskell. Pages 263 { 277 of: Pontelli, E.,& Costa, V. Santos (eds), Pra
ti
al aspe
ts of de
larative languages, ln

 1753. Le
tureNotes in Computer S
ien
e. Se
ond International Workshop, PADL 2000, Boston, MA,USA: Springer Verlag.Walla
e, Mal
olm, & Run
iman, Colin. (1999). Haskell and XML: Generi

ombinatorsor type-based translation? Pages 148{159 of: Pro
eedings of the ACM SIGPLAN in-ternational
onferen
e on fun
tional programming. Published in Sigplan Noti
es vol 34number 9. 27

www.manaraa.com

Wiger, Ulf. 2000 (O
tober). XMerL - interfa
ing XML and Erlang. Sixth InternationalErlang/OTP User Conferen
e. http://www.erlang.se/eu
/00/.

28

